AI-enhanced differentiable Ray Tracer for Irradiation-prediction in Solar Tower Digital Twins - ARTIST
Solarturmkraftwerke spielen eine Schlüsselrolle bei der Erleichterung der laufenden Energiewende, da sie regelbaren klimaneutralen Strom und direkte Wärme für chemische Prozesse liefern. In dieser Arbeit entwickeln wir einen heliostatspezifischen differenzierbaren Raytracer, der den Energietransport am Solarturm datengesteuert modellieren kann. Dies ermöglicht eine Rekonstruktion der Heliostatoberfläche und verbessert so die Vorhersage der Bestrahlungsstärke drastisch. Darüber hinaus reduziert ein solcher Raytracer auch die erforderliche Datenmenge für die Ausrichtungskalibrierung drastisch. Damit ist das Lernen für einen vollständig KI-betriebenen Solarturm prinzipiell machbar. Das angestrebte Ziel ist die Entwicklung eines ganzheitlichen KI-gestützten digitalen Zwillings des Solarkraftwerks für Design, Steuerung, Vorhersage und Diagnose auf Basis des physikalisch differenzierbaren Raytracers. Alle Betriebsparameter im Solarfeld, die den Energietransport beeinflussen, können damit optimiert werden. Erstmals ist eine Gradienten-basierte Feldgestaltung, Zielpunktsteuerung und Ist-Zustandsdiagnose möglich. Durch die Erweiterung um KI-basierte Optimierungstechniken und Reinforcement-Learning-Algorithmen soll es möglich sein, reale, dynamische Umgebungsbedingungen mit geringer Latenz auf den Zwilling abzubilden. Schließlich sind aufgrund der vollständigen Differenzierbarkeit auch visuelle Erklärungen für die operativen Handlungsvorhersagen möglich. Die vorgeschlagene KI-gestützte digitale Zwillingsumgebung wird in einem realen Kraftwerk in Jülich verifiziert. Seine Gründung markiert einen bedeutenden Schritt in Richtung eines vollautomatischen Solarturmkraftwerks.
Holistic Imaging and Molecular Analysis in life-threatening Ailments - HIMALAYA
Laufzeit: 01.02.2024 - 31.01.2027
Das Gesamtziel dieses Projektes ist die Verbesserung der radiologischen Diagnostik des humanen Prostatakarzinoms in der klinischen MRT durch die KI-basierte Ausnutzung von Informationen aus höher auflösenden Modalitäten. Dabei werden wir die Brillanz der HiP-CT Bildgebung an der Beamline 18 und eine erweiterte Histopathologie der gesamten Prostata nutzen, um die Interpretation von MRT-Bildern im Rahmen eines Forschungsprototypen zu optimieren. Parallel dazu ist die Korrelation der Bilddaten mit den molekularen Eigenschaften der Tumore zum besseren Verständnis invasiver Tumorstrukturen geplant. Eine interaktive Multiskalenvisualisierung über alle Modalitäten hinweg bildet die Grundlage, die immensen Datenmengen anschaulich zu vermitteln. Als Ergebnis soll am Ende der dreijährigen Projektphase unter Berücksichtigung neuartiger KI-Algorithmen die konventionelle radiologische Anwendung der Magnetresonanztomographie (MRT) in einen diagnostischen Standard transferiert werden, der auch bisher häufig fehlerhaft diagnostizierte Patienten mit invasiven Prostatatumoren zuverlässig erkennt. Mittelfristig wäre demzufolge von einer substantiellen Verbesserung der Versorgung von Patienten mit einem fortgeschrittenen Prostatakarzinom auszugehen. Darüber hinaus werden wir den im Projekt erstellten, einzigartigen multimodalen Datensatz inklusive Visualisierungswerkzeugen als Open Data zur Verfügung stellen, um so weitere Studien zum besseren Verständnis des Prostatakarzinoms zu ermöglichen, die potentiell zu neuartigen Diagnostik- und Therapieansätzen führen könnten.