Projects

Ongoing Projects

AI-enhanced differentiable Ray Tracer for Irradiation-prediction in Solar Tower Digital Twins - ARTIST

Contact: Dr. Marie Weiel, Dr. Markus Götz
Funding: Helmholtz-Gemeinschaft
since 2024-04-01 - 2026-03-31
Project page: www.helmholtz.ai/you-helmholtz-ai/project-funding

Solar tower power plants play a key role in facilitating the ongoing energy transition as they deliver dispatchable climate neutral electricity and direct heat for chemical processes. In this work we develop a heliostat-specific differentiable ray tracer capable of modeling the energy transport at the solar tower in a data-driven manner. This enables heliostat surface reconstruction and thus drastically improved the irradiance prediction. Additionally, such a ray tracer also drastically reduces the required data amount for the alignment calibration. In principle, this makes learning for a fully AI-operated solar tower feasible. The desired goal is to develop a holistic AI-enhanced digital twin of the solar power plant for design, control, prediction, and diagnosis, based on the physical differentiable ray tracer. Any operational parameter in the solar field influencing the energy transport may be, optimized with it. For the first time gradient-based, e.g., field design, aim point control, and current state diagnosis are possible. By extending it with AI-based optimization techniques and reinforcement learning algorithms, it should be possible to map real, dynamic environmental conditions with low-latency to the twin. Finally, due to the full differentiability, visual explanations for the operational action predictions are possible. The proposed AI-enhanced digital twin environment will be verified at a real power plant in Jülich. Its inception marks a significant step towards a fully automatic solar tower power plant.

Holistic Imaging and Molecular Analysis in life-threatening Ailments - HIMALAYA

Contact: Dr. Charlotte Debus
Funding: BMBF
since 2024-02-01 - 2027-01-31

The overall goal of this project is to improve the radiological diagnosis of human prostate cancer in clinical MRI by AI-based exploitation of information from higher resolution modalities. We will use the brilliance of HiP-CT imaging at beamline 18 and an extended histopathology of the entire prostate to optimise the interpretation of MRI images in the context of a research prototype. In parallel, the correlation of the image data with the molecular properties of the tumours is planned for a better understanding of invasive tumour structures. An interactive multi-scale visualisation across all modalities forms the basis for vividly conveying the immense amounts of data. As a result, at the end of the three-year project phase, the conventional radiological application of magnetic resonance imaging (MRI) is to be transferred into a diagnostic standard that also reliably recognises patients with invasive prostate tumours that have often been incorrectly diagnosed to date, taking into account innovative AI algorithms. In the medium term, a substantial improvement in the care of patients with advanced prostate carcinoma can therefore be expected. In addition, we will make the unique multimodal data set created in the project, including visualisation tools, available as open data to enable further studies to better understand prostate cancer, which could potentially lead to novel diagnostic and therapeutic approaches.