Datenmanagment und Datenanalyse

  • Typ: Praktikum (P)
  • Semester: WS 18/19
  • Zeit:

    nach Vereinbarung

  • Dozent: Nico Schlitter
    Andreas Petzold
    Prof. Dr. Achim Streit
  • SWS: 2
  • LVNr.: 2400043

Anmeldeinformationen

Es stehen 10 Praktikumsplätze zur Verfügung. Bitte schicken Sie eine Bewerbung mit Lebenslauf und Notenauszug an Herrn Nico Schlitter per Email bis zum 30.09.2018 um 23:59:59.

Voraussetzungen

Empfehlung: Grundkenntnisse in den Bereichen Datenbanken, Datenmanagement oder Datenanalyse sind hilfreich.

Lehrinhalt

Die Praktikumsteilnehmer erhalten die Möglichkeit, Ihre Kenntnisse aus dem Bereichen Datenmanagement und Datenanalyse zu vertiefen und praxisnah einzusetzen. Die zu bearbeitenden Aufgaben stammen aus den Teilgebieten:

  • Authentifizierungs- und Autorisierungs-Infrastruktur (z.B. OpenID, SAML)
  • Verteilte & Parallele Dateisysteme (z.B. glusterFS, BeeGFS)
  • Object Storage (z.B. S3, CEPH)
  • Datenmanagement System (z.B. dCache, iRods)Datenbanken (SQL, NoSQL)
  • Maschinelles Lernen und Data Mining (z.B. RapidMiner, scikit)
  • Daten-Intensives Rechnen (z.B. Hadoop, Spark)

Die Studierenden werden durch wissenschaftliche Mitarbeiter des Scientific Computing Center individuell betreut und können ihre Fähigkeiten durch Einbindung in aktuelle Forschungsaufgaben (z.B. Helmholtz-Programm, BMBF- und EU-Projekte) praxis- und forschungsnah einsetzen.

Themenvergabe und Planung der Präsenztermine erfolgt individuell zw. Praktikumsteilnehmer und Betreuer. Praktikumsteilnehmer bearbeiten separate Aufgabengebiete. Bei der Erstellung der Aufgabe werden eventuelle Vorkenntnisse und Interessensgebiete der Teilnehmer berücksichtigt.

Ziel

Studierende können Werkzeuge und Techniken zum Datenmanagement und zur Datenanalyse auf praxisnahe Problemstellungen anwenden. Weiterhin können Studierende die Fähigkeit erwerben, komplexe Sachverhalte zu analysieren und dafür Lösungen zu entwickeln.Neben der Bewältigung der individuellen Praktikumsaufgaben, stärken Studierende ihre Kommunikations- und Präsentationskompetenz.

Arbeitsbelastung

12 h Präsenzzeit in Praktikumsbesprechungen, 18 h Vor-/Nachbereitung derselbigen, 90 h Bearbeitung des Themas und Erstellen der Prüfungsleistung

Prüfung

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Die Prüfungsleistung kann aus Experimenten oder Projekten jeweils mit abschließendem Vortrag bestehen.