Introduction to Kinetic Theory
- Typ: Vorlesung (V)
-
Lehrstuhl:
Zentrale Einrichtungen - Scientific Computing Center
KIT-Fakultäten - KIT-Fakultät für Mathematik
KIT-Fakultäten - KIT-Fakultät für Mathematik - Institut für Angewandte und Numerische Mathematik - Semester: WS 23/24
-
Zeit:
Mi. 25.10.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 08.11.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 15.11.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 22.11.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 29.11.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 06.12.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 13.12.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 20.12.2023
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 10.01.2024
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 17.01.2024
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 24.01.2024
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 31.01.2024
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 07.02.2024
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
Mi. 14.02.2024
08:00 - 09:30, wöchentlich
20.30 SR 3.061
20.30 Kollegiengebäude Mathematik
- Dozent: Prof. Dr. Martin Frank
- SWS: 2
- LVNr.: 0155450
- Hinweis: Präsenz/Online gemischt
Inhalt | Kinetic descriptions play an important role in a variety of physical, biological, and even social applications, for instance, in the description of gases, radiations, bacteria or financial markets. Typically, these systems are described locally not by a finite set of variables but instead by a probability density describing the distribution of a microscopic state. Its evolution is typically given by an integro-differential equation. Unfortunately, the large phase space associated with the kinetic description has made simulations impractical in most settings in the past. However, recent advances in computer resources, reduced-order modeling and numerical algorithms are making accurate approximations of kinetic models more tractable, and this trend is expected to continue in the future. On the theoretical mathematical side, two rather recent Fields medals (Pierre-Louis Lions 1994, Cédric Villani 2010) also indicate the continuing interest in this field, which was already the subject of Hilbert's sixth out of the 23 problems presented at the World Congress of Mathematicians in 1900. This course gives an introduction to kinetic theory. Our purpose is to discuss the mathematical passage from a microscopic description of a system of particles, via a probabilistic description to a macroscopic view. This is done in a complete way for the linear case of particles that are interacting with a background medium. The nonlinear case of pairwise interacting particles is treated on a more phenomenological level. An extremely broad range of mathematical techniques is used in this course. Besides mathematical modeling, we make use of statistics and probability theory, ordinary differential equations, hyperbolic partial differential equations, integral equations (and thus functional analysis) and infinite-dimensional optimization. Among the astonishing discoveries of kinetic theory are the statistical interpretation of the Second Law of Thermodynamics, induced by the Boltzmann-Grad limit, and the result that the macroscopic equations describing fluid motion (namely the Euler and Navier-Stokes equations) can be inferred from abstract geometrical properties of integral scattering operators. |
Vortragssprache | Englisch |
Organisatorisches | The course will be offered in flipped classroom format. Flipped classroom means that the lectures will be made available as videos. We will regularly meet for tutorials and discussion sessions. |