Die Erklärung und das Verständnis der zugrundeliegenden Wechselwirkungen von Genomregionen sind entscheidend für eine angemessene Charakterisierung des Phänotyps von Krankheitserregern, z. B. für die Vorhersage der Virulenz eines Organismus oder der Resistenz gegen Medikamente. Bestehende Methoden zur Klassifizierung der zugrundeliegenden komplexen Datenmengenvon Genomsequenzen stehen aufgrund der hohen Dimensionalität vor dem Problem der Erklärbarkeit, was die Visualisierung, die Intepretierbarkeit und die Rechtfertigung von Klassifizierungsentscheidungen erschwert. Dies gilt insbesondere für Interaktionen, wie z. B. bei genomischen Regionen. Um diese Herausforderungen zu bewältigen, werden wir Methoden zur Variablenselektion und strukturierten Erklärbarkeit entwickeln, die Interaktionen wichtiger Eingabevariablen erfassen: Genauer gesagt gehen wir diese Herausforderungen (i) im Rahmen eines tiefen gemischten Modells für binäre Ergebnisse an, das verallgemeinerte lineare gemischte Modelle und eine tiefe Variante strukturierter Prädiktoren vereint. Dabei kombinieren wir logistische Regressionsmodelle mit Deep Learning, um komplexe Interaktionen in genomischen Daten zu entschlüsseln. Wir ermöglichen insbesondere dann eine Schätzung, wenn keine explizit formulierten Einflussgrößen für die Modelle verfügbar sind, wie dies beispielsweise bei Genomdaten der Fall ist. Darüber hinaus werden wir (ii) Methoden zur besseren Erklärung von Interaktionen aufKlassifizierungsentscheidungen wie die Layerwise Relevance Propagation erweitern. Indem wir diese beiden komplementären Ansätze sowohl auf der Modell- als auch auf der Erklärbarkeitsebene untersuchen, ist es unser Hauptziel, strukturierte Erklärungen zu formulieren und zu postulieren, die nicht nur Erklärungen erster Ordnung für einzelne Variablen von Klassifizierungsentscheidungen liefern, sondern auch deren Interaktionen berücksichtigen. Obwohl unsere Methoden durch unsere genomischen Daten motiviert sind, können sie nützlich sein und auf andere Anwendungsbereiche ausgedehnt werden, in denen Interaktionen von Interesse sind.
Copula-basierte Verteilungsregression für Raum-Zeit Daten entwickelt neue Modelle für multivariate raum-zeitliche Daten unter Verwendung von Verteilungsregression mittels Copulas. Von besonderem Interesse sind statistische Tests und die automatische Variablenauswahl mit Bayesianischen Variablenselektionsmethoden. Langfristig wird sich das Projekt mit der effizienten Modellierung nicht-stationärer Abhängigkeiten unter Verwendung stochastischer partieller Differentialgleichungen befassen.
Auf Basis der Software GitLab wird ein Landesdienst für die Verwaltung, Versionierung und Publikation von Software-Repositories für die Hochschulen in Baden-Württemberg im Rahmen der IT-Allianz geschaffen. GitLab bietet zudem zahlreiche Möglichkeiten für kollaboratives Arbeiten und verfügt über umfangreiche Funktionalitäten für die Software-Entwicklung und Automatisierung. Der Dienst ermöglicht oder vereinfacht standortübergreifende Entwicklungsprojekte zwischen Hochschulen und mit externen Partnern, neue Möglichkeiten im Bereich des Forschungsdatenmanagements und kann gewinnbringend in der Lehre eingesetzt werden. Außerdem wird eine Alternative zu Cloud-Angeboten wie GitHub geschaffen und der Verbleib der Daten aus Forschung und Lehre in Baden-Württemberg vereinfacht.
Die anhaltende Erwärmung des Erdklimas durch den vom Menschen verursachten Klimawandel verändert unser Wetter grundlegend. Traditionell werden Wettervorhersagen basierend auf numerischen Modellen getroffen, sogenannte Numerical Weather Predictions (NWP). Datengetriebene Modelle des maschinellen Lernens und insbesondere tiefe neuronale Netze bieten als Surrogatmodelle das Potential zur schnellen und (energie) effizienten Emulation von NWP Modellen. Im Rahmen des Projektes SmartWeather21 wollen wir untersuchen, welche DL-Architektur für NWP sich am besten für die Wettervorhersage in einem wärmeren Klima eignet, basierend auf den hochaufgelösten Klimaprojektionen, die im Rahmen von WarmWorld mit ICON erstellt werden. Um die hohen Auflösungen des WarmWorld Klimaprojektionen mit einzubeziehen, werden wir daten- und modellparallelen Ansätzen und Architekturen für die Wettervorhersage in einem wärmeren Klima entwickeln. Darüber hinaus werden wir untersuchen welche (lernbaren Kombinationen von) Variablen aus den ICON Klimaprojektionen die beste, physikalisch plausible Vorhersagegenauigkeit für die Wettervorhersage in einem wärmeren Klima bieten. Unter diesem Aspekt entwickeln wir Dimensionsreduktionstechniken für die verschiedenen Eingangsvariablen, die als Upstream- Task eine latente, niedrig-dimensionalere Darstellung basierend auf der Genauigkeit der Downstream Wettervorhersage lernen. Die erhöhte räumliche Auflösung der ICON Simulationen erlauben außerdem Rückschlüsse auf die Unsicherheiten einzelner Eingangs- und Ausgangsvariablen bei niedrigeren Auflösungen zu ziehen. Im Rahmen von SmartWeather21 werden wir Methoden entwickeln, die diese Unsicherheiten durch Wahrscheinlichkeitsverteilungen parametrisieren und als Eingangsvariablen mit niedrigerer räumlicher Auflösung in DL-basierten Wettermodellen verwenden. Diese können im Rahmen probabilistischer Vorhersagen durch das Modell propagiert werden.
Ziel dieses Projekts ist die Stärkung forschungsorientierter Lehre, vor allem in den Bereichen KI, maschinelles Lernen, Simulation und Modellierung, durch die Bereitstellung eines landesweiten Dienstes bwJupyter.
Solarturmkraftwerke spielen eine Schlüsselrolle bei der Erleichterung der laufenden Energiewende, da sie regelbaren klimaneutralen Strom und direkte Wärme für chemische Prozesse liefern. In dieser Arbeit entwickeln wir einen heliostatspezifischen differenzierbaren Raytracer, der den Energietransport am Solarturm datengesteuert modellieren kann. Dies ermöglicht eine Rekonstruktion der Heliostatoberfläche und verbessert so die Vorhersage der Bestrahlungsstärke drastisch. Darüber hinaus reduziert ein solcher Raytracer auch die erforderliche Datenmenge für die Ausrichtungskalibrierung drastisch. Damit ist das Lernen für einen vollständig KI-betriebenen Solarturm prinzipiell machbar. Das angestrebte Ziel ist die Entwicklung eines ganzheitlichen KI-gestützten digitalen Zwillings des Solarkraftwerks für Design, Steuerung, Vorhersage und Diagnose auf Basis des physikalisch differenzierbaren Raytracers. Alle Betriebsparameter im Solarfeld, die den Energietransport beeinflussen, können damit optimiert werden. Erstmals ist eine Gradienten-basierte Feldgestaltung, Zielpunktsteuerung und Ist-Zustandsdiagnose möglich. Durch die Erweiterung um KI-basierte Optimierungstechniken und Reinforcement-Learning-Algorithmen soll es möglich sein, reale, dynamische Umgebungsbedingungen mit geringer Latenz auf den Zwilling abzubilden. Schließlich sind aufgrund der vollständigen Differenzierbarkeit auch visuelle Erklärungen für die operativen Handlungsvorhersagen möglich. Die vorgeschlagene KI-gestützte digitale Zwillingsumgebung wird in einem realen Kraftwerk in Jülich verifiziert. Seine Gründung markiert einen bedeutenden Schritt in Richtung eines vollautomatischen Solarturmkraftwerks.
Zusammen mit den gewonnenen Erkenntnissen, Bewertungen und Empfehlungen sollen die aktuellen Herausforderungen und definierten Handlungsfelder des Rahmenkonzepts der Universitäten des Landes Baden-Württemberg für das HPC und DIC im Zeitraum 2025 bis 2032 durch folgende Maßnahmen im Projekt konkretisiert werden: • Weiterentwicklung der Wissenschaftsunterstützung bzgl. Kompetenzen zur Unterstützung neuartiger System- und Methodekonzepte (KI, ML oder Quantencomputing), Vernetzung mit Methodenfor- schung, ganzheitliche Bedarfsanalysen und Unterstützungsstrategien (z.B. Onboarding) • Steigerung der Energieeffizienz durch Sensibilisierung sowie Untersuchung und Einsatz neuer Be- triebsmodelle und Workflows inkl. optimierter Software • Erprobung und flexible Integration neuer Systemkomponenten und -architekturen, Ressourcen (z.B. Cloud) sowie Virtualisierung- und Containerisierungslösungen • Umsetzung neue Software-Strategien (z.B. Nachhaltigkeit und Entwicklungsprozesse) • Ausbau der Funktionalitäten der baden-württembergischen Datenföderation (z.B. Daten-Transfer- Service) • Umsetzung von Konzepten beim Umgang mit sensiblen Daten und zur Ausprägung einer digitalen Souveränität • Vernetzung und Kooperation mit anderen Forschungsinfrastrukturen
Das Projekt "ICON-SmART" befasst sich mit der Rolle von Aerosolen und atmosphärischer Chemie für die Simulation von saisonalen bis dekadischen Klimaschwankungen und -änderungen. Zu diesem Zweck wird das Projekt die Fähigkeiten des gekoppelten Kompositions-, Wetter- und Klimamodellierungssystems ICON-ART (ICON, ikosaedrisches nicht-hydrostatisches Modell - entwickelt von DWD, MPI-M und DKRZ mit dem Atmosphärenzusammensetzungsmodul ART, Aerosole und reaktive Spurengase - entwickelt vom KIT) für sonale bis dekadische Vorhersagen und Klimaprojektionen in nahtlosen globalen bis regionalen Modellkonfigurationen mit ICON-Seamless-ART (ICON-SmART) untersuchen. Auf der Grundlage früherer Arbeit ist die Chemie ein vielversprechender Kandidat für eine Beschleunigung durch maschinelles Lernen. Darüber hinaus wird das Projekt Ansätze des maschinellen Lernens für andere Prozesse untersuchen. Das ICON-SmART-Modellsystem wird Wissenschaftlern, Prognostikern und politischen Entscheidungsträgern ein neuartiges Instrument zur Untersuchung der atmosphärischen Zusammensetzung in einem Klima zu untersuchen, und ermöglicht es uns, Fragen zu beantworten, die bisher unerreichbar waren.
In diesem Projekt werden künstliche neuronale Netze bei einem inversen Designproblem eingesetzt, bei dem es darum geht, nanostrukturierte Materialien mit bedarfsgerechten optischen Eigenschaften zu finden. Um dieses Ziel zu erreichen, müssen große Datenmengen aus 3D-Simulationen der Maxwell-Gleichungen generiert werden, was dies zu einem datenintensiven Rechenproblem macht. Es werden maßgeschneiderte Algorithmen entwickelt, die sowohl den Lernprozess als auch die effiziente Inversion berücksichtigen. Das Projekt ergänzt die Forschungsarbeiten des SDL Materials Science zu KI-Methoden, großen durch Simulationen erzeugten Datensätzen und Arbeitsabläufen.
Das Projekt EQUIPE beschäftigt sich mit der Quantifizierung von Unsicherheiten in großen Transformer-Modellen für die Zeitreihen-Vorhersage. Die Transformer-Architektur ist zwar in der Lage eine erstaunlich hohe Vorhersagegenauigkeit zu erzielen, benötigen jedoch immense Mengen an Rechenressourcen. Gängige Ansätze der Fehlerabschätzung in neuronalen Netzen sind in gleichem Maße rechenintensiv, was ihren Einsatz in Transformern derzeit noch erheblich erschwert. Die Forschungsarbeiten im Rahmen von EQUIPE zielen darauf ab, diese Probleme zu beheben, und skalierbare Algorithmen zur Quantifizierung von Unsicherheiten in großen neuronalen Netzen zu entwickeln .Dadurch wird perspektivisch der Einsatz der Methoden in Echtzeit-Systemen ermöglicht.
Das Hauptziel des vorliegenden Projekts ist die Weiterentwicklung und Validierung einer neuen CFD-Methode (Computational Fluid Dynamics), die eine Kombination aus gitterfreien (Partikel) und gitterbasierten Techniken verwendet. Eine grundlegende Annahme dieses neuen Ansatzes ist die Zerlegung jeder physikalischen Größe in einen gitterbasierten (großskaligen) und einen feinskaligen Teil, wobei die großskaligen Teile auf dem Gitter aufgelöst und die feinskaligen Teile durch Partikel dargestellt werden. Die Dynamik der großen und feinen Skalen wird aus zwei gekoppelten Transportgleichungen berechnet, von denen eine auf dem Gitter gelöst wird, während die zweite die Lagrangesche gitterfreie Vortex-Partikel-Methode (VPM) verwendet.
InterTwin entwirft und implementiert den Prototypen einer interdisziplinären Digital Twin Engine (DTE). Dies ist eine Open-Source-Plattform, die generische Softwarekomponenten für die Modellierung und Simulation zur Integration anwendungsspezifischer Digitalen Zwillingen bereitstellt. Die Spezifikationen basieren auf einem im Projekt zu entwerfenden konzeptionellen Modell - der DTE Blueprint-Architektur. Diese orientiert sich an den Grundsätzen von offenen Standards und Interoperabilität. Das Ziel ist die Entwicklung eines gemeinsamen Ansatzes für die Implementierung von Digital Twins zu entwickeln, der über das gesamte Spektrum der wissenschaftlichen Disziplinen und darüber hinaus anwendbar ist.
Unkraut ist eine der Hauptursachen für Ernteverluste. Daher setzen Landwirte verschiedene Methoden ein, um den Unkrautwuchs auf ihren Feldern zu kontrollieren, am häufigsten chemische Herbizide. Die Herbizide werden jedoch oft gleichmäßig auf dem gesamten Feld ausgebracht, was sich negativ auf Umwelt und Kosten auswirkt. Die standortspezifische Unkrautbekämpfung (site-specific weed management; SSWM) berücksichtigt die Variabilität auf dem Feld und lokalisiert die Behandlung. Die genaue Lokalisierung von Unkräutern ist daher der erste Schritt zum SSWM. Darüber hinaus sind Informationen über die Zuverlässigkeit der Vorhersage entscheidend für den Einsatz der Methoden in der Praxis. Dieses Projekt zielt darauf ab, Methoden für die Unkrautidentifizierung in Ackerflächen auf der Grundlage von UAV-Fernerkundungsbildern aus geringer Höhe und die Quantifizierung von Unsicherheiten mithilfe von Bayesianischem maschinellem Lernen zu entwickeln, um einen ganzheitlichen Ansatz für SSWM zu entwickeln. Das Projekt wird von der Helmholtz Einstein International Berlin Research School in Data Science (HEIBRiDS) unterstützt und von Prof. Dr. Martin Herold vom GFZ German Research Centre for Geosciences mitbetreut.
Das Projekt Simulierte Welten hat sich zum Ziel gesetzt, Schülerinnen und Schülern in Baden-Württemberg ein vertieftes kritisches Verständnis der Möglichkeiten und Grenzen von Computersimulationen zu vermitteln. Das Vorhaben wird gemeinsam vom Scientific Computing Center (SCC), dem Höchstleistungsrechenzentrum Stuttgart (HLRS) sowie der Universität Ulm getragen und arbeitet bereits mit mehreren Schulen in Baden-Württemberg zusammen.
Trotz erheblicher Überschneidungen und Synergien haben sich das maschinelle Lernen und die statistische Wissenschaft weitgehend parallel entwickelt. Deep Gaussian mixture models, eine kürzlich eingeführte Modellklasse des maschinellen Lernens, befassen sich mit den unüberwachten Aufgaben der Dichteschätzung und hochdimensionalen Clusterbildung, die in vielen Anwendungsbereichen zur Mustererkennung verwendet werden. Um überparametrisierte Lösungen zu vermeiden, kann auf jeder Ebene der Architektur eine Dimensionsreduktion durch Faktormodelle vorgenommen werden. Die Wahl der Architekturen kann jedoch als Bayesianisches Modellwahlproblem interpretiert werden, was bedeutet, dass jedes mögliche Modell, das die Bedingungen erfüllt, angepasst wird. Die Autoren schlagen einen viel einfacheren Ansatz vor: Es muss nur ein einziges großes Modell trainiert werden, und überflüssige Komponenten werden weggelassen. Die Idee, dass Parametern a-priori-Verteilungen zugewiesen werden können, ist höchst unorthodox, aber extrem einfach und bringt zwei Wissenschaften zusammen, nämlich maschinelles Lernen und Bayesianische Statistik.
Im Rahmen des JointLab VMD entwickelt das SDL Materials Science Methoden, Werkzeuge und architektonische Konzepte für Supercomputing- und Big-Data-Infrastrukturen, die auf die spezifischen Anwendungsherausforderungen zugeschnitten sind und die Digitalisierung in der Materialforschung und die Erstellung von digitalen Zwillingen erleichtern. Insbesondere entwickelt das Joint Lab eine virtuelle Forschungsumgebung (VRE), die Rechen- und Datenspeicherressourcen in bestehende Workflow-Managementsysteme und interaktive Umgebungen für Simulationen und Datenanalysen integriert.
Für moderne biomedizinische Fragestellungen liefern klassische Regressionsmodelle häufig eine zu sehr vereinfachte Sicht auf komplexe Zusammenhänge. Insbesondere sind mögliche Assoziationen zwischen multiplen klinischen Endpunkten, wie sie heutzutage meist erfasst werden, bei der Modellierung adäquat zu berücksichtigen. Die klassische separate Modellierung verschiedener Zielgrößen kann in vielen Fällen zu verzerrten Ergebnissen und falschen bzw. unvollständigen Schlussfolgerungen führen. Dieser Herausforderung möchten sich die beiden Projektpartner stellen und ihre komplementären Vorarbeiten nutzen, um neuartige Copula-Regressionsmodelle für hoch-dimensionale biomedizinische Fragestellungen zu etablieren. Die zu entwickelnden Methoden erlauben es, mehrere Studien-Endpunkte simultan zu modellieren und dabei die dafür nötigen Einflussgrößen und Risikofaktoren aus potentiell hoch-dimensionalen Daten über Algorithmen des statistischen Lernens zu selektieren. Die daraus resultierenden Modelle können sowohl für die Interpretation und Analyse komplexer Assoziationsstrukturen als auch für die Prognose-Inferenz (simultane Prognoseintervalle für mehrere Zielgrößen) verwendet werden. Zusätzliche Implementierung in frei verfügbarer Software und deren Anwendungen in verschiedenen Studien unterstreichen das Potential und den Beitrag dieses Projektes für die methodischen Herausforderungen des Zukunftsfeldes Digitale Medizin.
Im Zeitalter der Digitalisierung liegen vielen wissenschaftlichen Studien immer größere und komplexere Datenmengen zugrunde. Diese „Big Data“-Anwendungen bieten viele Ansatzpunkte für die Weiterentwicklung von statistischen Methoden, die insbesondere genauere und an deren Komplexität angepasste Modelle sowie die Entwicklung verbesserter Inferenzmethoden erfordern, um potentiellen Modellfehlspezifikationen, verzerrten Schätzern und fehlerhaften Folgerungen und Prognosen entgegenzuwirken. Das hier vorgeschlagene Projekt wird statistische Methoden für flexible univariate und multivariate Regressionsmodelle und deren genaue und effiziente Schätzung entwickeln. Genauer sollen durch einen probabilistischen Ansatz zu klassischen Verfahren des maschinellen Lernens effizientere und statistische Lernalgorithmen zur Schätzung von Modellen mit großen Datensätzen erarbeitet werden. Um die Modellierung der gesamten bedingten Verteilung der Zielgrößen zu ermöglichen, sollen darüber hinaus neuartige Verteilungsregressionsmodelle entwickelt werden, welche sowohl die Analyse univariater als auch multivariater Zielgrößen erlauben und gleichzeitig interpretiere Ergebnisse liefern. In all diesen Modellen sollen außerdem die wichtigen Fragen der Regularisierung und Variablenselektion betrachtet werden, um deren Anwendbarkeit auf Problemstellungen mit einer großen Anzahl an potentiellen Prädiktoren zu gewährleisten. Auch die Entwicklung frei verfügbarer Software sowie Anwendungen in den Natur- und Sozialwissenschaften (wie zum Beispiel zu Marketing, Wettervorhersagen, chronischen Krankheiten und anderen) stellen einen wichtigen Bestandteil des Projekts dar und unterstreichen dessen Potential, entscheidend zu wichtigen Aspekten der modernen Statistik und Datenwissenschaft beizutragen.
Die Helmholtz AI Plattform ist ein Forschungsprojekt des Helmholtz Inkubators “Information & Data Science”. Die übergeordnete Mission der Plattform ist dabei die “Demokratisierung von KI für eine datengetriebene Zukunft” und ziehlt darauf ab einer möglich breiten Nutzendengruppe KI-Algorithmen und -Ansätze einfach handhabbar und ressourcenschonend zur Verfügung zu stellen. Die Helmholtz AI Plattform ist nach einem Rad-Speichen-Modell strukturiert, dass die sechs Forschungsfelder der Helmholtz-Gemeinschaft abdeckt. Das KIT ist dabei mit seiner Local Unit für den Themenkreis Energieforschung verantwortlich. In diesem Rahmen unterstützt das SCC Forschende mit einer Beratungseinheit bei der Umsetzung von KI-Forschungsvorhaben in der Erkundung neuer Ansätze zur Energieerzeugung, -verteilung und -speicherung.
Im Graduiertenkolleg "Maßgeschneiderte Multiskalenmethoden für Computersimulationen von nanoskaligen Materialien" untersuchen wir Probleme, die mit einzelnen Standardwerkzeugen der Computational Chemistry nicht zu bewältigen sind. Die Forschung ist in sieben Projekte gegliedert. Fünf Projekte adressieren wissenschaftliche Herausforderungen wie Reibung, Materialalterung, Materialdesign und biologische Funktion. In zwei weiteren Projekten werden neue Methoden und Werkzeugen der Mathematik und der Informatik für die speziellen Anforderungen dieser Anwendungen entwickelt und bereitgestellt. Das SCC ist an den Projekten P4, P5 und P6 beteiligt.
CAMMP steht für Computational And Mathematical Modeling Program (Computergestütztes Mathematisches Modellierungsprogramm). Es ist ein außerschulisches Angebot des KIT für Schülerinnen und Schüler verschiedenen Alters. CAMMP will die gesellschaftliche Bedeutung von Mathematik und Simulationswissenschaften der Öffentlichkeit bewusst machen. Dazu steigen Schülerinnen und Schüler in verschiedenen Veranstaltungsformaten gemeinsam mit Lehrkräften aktiv in das Problemlösen mit Hilfe von mathematischer Modellierung und dem Einsatz von Computern ein und erforschen dabei reale Probleme aus Alltag, Industrie oder Forschung.
Mit der Zunahme der künstlichen Intelligenz und dem damit einhergehenden Bedarf an Rechenressourcen wird die Energieeffizienz von großskaligen Deep Learning (DL) Anwendungen immer wichtiger. Das Ziel von EPAIS ist es, die Rechenleistung und den Energieverbrauch von hochmodernen DL-Modellen im großen Maßstab zu bewerten und zu korrelieren und letzteren durch Optimierung des ersteren zu verbessern. Im Rahmen des Projekts messen und analysieren wir den Energieverbrauch und die Rechenleistung wissenschaftlicher DL-Workloads mit dem Ziel, die Korrelation zwischen diesen beiden Faktoren aufzudecken. In diesem Zusammenhang entwickeln wir benutzerfreundliche Tools mit geringem Aufwand für die Messung des Energieverbrauchs und der Leistung. Diese Tools können von KI-Entwicklern in ihren Code integriert werden, um eine grundlegende Bewertung dieser Metriken vorzunehmen und so das Bewusstsein für GreenAI und GreenHPC zu fördern. Auf der Grundlage der so erlangten Erkenntnisse entwickeln wir neue Ansätze zur Steigerung der Energieeffizienz von DL-Workloads durch Leistungsoptimierung.
Trotz stetiger Verbesserung der numerischen Wettervorhersagemodelle weisen diese immer noch systematische Fehler auf, die durch vereinfachte Darstellungen physikalischer Prozesse, Annahmen über lineares Verhalten und die Herausforderungen, alle verfügbaren Beobachtungsdaten zu integrieren, verursacht werden. Wetterdienste in aller Welt erkennen nun, dass die Beseitigung dieser Defizite durch den Einsatz künstlicher Intelligenz (KI) die Disziplin in den nächsten Jahrzehnten revolutionieren könnte. Dies erfordert ein grundlegendes Umdenken, das die Meteorologie viel stärker mit der Mathematik und Informatik verzahnt. TEEMLEAP wird diesen Kulturwandel durch eine Kooperation von Wissenschaftlern der KIT-Zentren Klima und Umwelt und MathSEE fördern, indem ein idealisiertes Testbed zur Erforschung des maschinellen Lernens in der Wettervorhersage eingerichtet wird. Im Gegensatz zu Wetterdiensten, welche sich naturgemäß auf Verbesserungen der numerischen Vorhersagemodelle in ihrer vollen Komplexität konzentrieren, beabsichtigt TEEMLEAP die Einsatzmöglichkeiten und den Nutzen von KI in diesem Testbed entlang der gesamten Prozesskette der Wettervorhersage zu evaluieren.
Herz-Kreislauf-Erkrankungen zählen zu den weltweit häufigsten Todesursachen: Jedes Jahr sterben in Deutschland über 300 000 Menschen an den Folgen. Rund die Hälfte dieser Todesfälle werden durch Herzrhythmusstörungen verursacht. Im europäischen Projekt MICROCARD, an dem das Karlsruher Institut für Technologie (KIT) beteiligt ist, entwickeln Forschende nun eine Simulationsplattform, die die elektrophysikalischen Signalübertragungen im Herzen digital abbilden kann. Die Computersimulationen sollen insbesondere zu einer verbesserten Diagnose und Therapie beitragen. Das KIT erhält für seine Beiträge im Rahmen des „European High-Performance Computing Joint Undertaking“ etwa 1,3 Millionen Euro.
Das primäre Ziel des Projektes ist die Etablierung einer integrierten landesweiten Rechen- und Dateninfrastruktur sowie die Steigerung der Effizienz und der Effektivität durch erstklassige Unterstützung der Wissenschaftler und Nutzer.
Gemeinsam mit Partnern des Forschungszentrums Jülich und des Fritz-Haber-Instituts Berlin wollen wir ein neuartiges intelligentes Managementsystem für Elektrobatterien entwickeln, das auf Basis eines detaillierten Surrogatmodells ("digitaler Zwilling") der Batterie und künstlicher Intelligenz bessere Entscheidungen über die Ladezyklen treffen kann.
Das Helmholtz AI COmpute REssources Infrastrukturprojekt ist Teil des Helmholtz Inkubators “Information & Data Science” und dient der Bereitstellung von leistungsstarken Rechenressourcen für die Forschenden im Bereich künstlicher Intelligenz (KI) in der Helmholtz-Gemeinschaft. Technisch wird die KI-Hardware als Teil der Hochleistungsrechnersysteme JUWELS (Julich Supercomputing Centre) und HoreKa (KIT) an den beiden Zentren betrieben. Das SCC deckt dabei vornehmlich den prototypischen Entwicklungsbetrieb ab in dem neue Ansätze, Modelle und Verfahren entwickelt und erprobt werden können. HAICORE steht allen Mitgliedern der Helmholtz-Gemeinschaft im Bereich KI-Forschung offen.
Das Pilotlab Exascale Earth System Modelling (PL-ExaESM) erforscht spezifische Konzepte um Erdsystemmodelle und ihre Workflows, auf zukünftigen Exascale-Supercomputern zur Anwendung zu bringen. Das Projekt ist in fünf Arbeitspakete gegliedert, welche mittels Co-Design zwischen Domänen-Wissenschaftlern und Informatikern die programmier- und datenwissenschaftlichen Herausforderungen dieser zukünftigen Höchstleistungsrechner adressieren. PL-ExaESM bietet eine neue Plattform für Forscher der Helmholtz-Gemeinschaft, um wissenschaftliche und technologische Konzepte für zukünftige Erdsystemmodelle und Datenanalysen zu entwickeln. Die Komplexität und Heterogenität der Exascale-Systeme, neue Software-Paradigmen für die nächste Generation von Erdsystemmodellen sowie grundlegend neue Konzepte für die Integration von Modellen und Daten sind erforderlich. Konkret werden in PL-ExaESM neue Lösungen für die Parallelisierung und das Scheduling von Modellkomponenten, die Handhabung und Bereitstellung großer Datenmengen und die nahtlose Integration von Informationsmanagementstrategien entlang der gesamten Prozesswertschöpfungskette von globalen Erdsystemsimulationen bis hin zu lokalen Wirkungsmodellen entwickelt. Zudem wird das Potenzial des maschinellen Lernens zur Optimierung dieser Aufgaben untersucht. PL-ExaESM wird als Inkubator für das Joint Lab EESM in der POF IV fungieren. Es wird die Zusammenarbeit zwischen den Forschungsbereichen und -zentren der Helmholtz-Gemeinschaft verbessern und dazu beitragen, die Helmholtz-Gemeinschaft als einen wichtigen Akteur in europäischen Flagship-Initiativen, wie ExtremeEarth, und anderen zu positionieren.
Development of an innovative measurement system based on P&DGNAA technology for environmental analysis including new evaluation algorithms.
Entwicklung einer innovativen Messanlage auf Grundlage der P&DGNAA sowie einer geeigneten Auswertemethodik für die Umweltanalytik.
Zukünftige exascale HPC-Systeme benötigen effiziente Datenmanagement-Methoden. Dabei sind die Lokalität der Daten und der effiziente Zugriff während einer Simulation von großer Bedeutung.
Das Scientific Computing Center (SCC) betreibt Forschungsplattform Smart Data Innovation Lab (SDIL) am KIT. SDIL schafft die Voraussetzungen für die Spitzenforschung im Bereich Big Data ...