A new TEstbed for Exploring Machine LEarning in Atmospheric Prediction (TEEMLEAP)
- Ansprechperson:
- Förderung: KIT-Exzellenzinitiative
- Projektbeteiligte: IMK-TRO, ECON, IANM, IWG
- Starttermin: 01.09.2021
- Endtermin: 30.08.2023
Trotz stetiger Verbesserung der numerischen Wettervorhersagemodelle weisen diese immer noch systematische Fehler auf, die durch vereinfachte Darstellungen physikalischer Prozesse, Annahmen über lineares Verhalten und die Herausforderungen, alle verfügbaren Beobachtungsdaten zu integrieren, verursacht werden. Wetterdienste in aller Welt erkennen nun, dass die Beseitigung dieser Defizite durch den Einsatz künstlicher Intelligenz (KI) die Disziplin in den nächsten Jahrzehnten revolutionieren könnte. Dies erfordert ein grundlegendes Umdenken, das die Meteorologie viel stärker mit der Mathematik und Informatik verzahnt. TEEMLEAP wird diesen Kulturwandel durch eine Kooperation von Wissenschaftlern der KIT-Zentren Klima und Umwelt und MathSEE fördern, indem ein idealisiertes Testbed zur Erforschung des maschinellen Lernens in der Wettervorhersage eingerichtet wird. Im Gegensatz zu Wetterdiensten, welche sich naturgemäß auf Verbesserungen der numerischen Vorhersagemodelle in ihrer vollen Komplexität konzentrieren, beabsichtigt TEEMLEAP die Einsatzmöglichkeiten und den Nutzen von KI in diesem Testbed entlang der gesamten Prozesskette der Wettervorhersage zu evaluieren.