The ongoing warming of the earth's climate due to man-made climate change is fundamentally changing our weather. Traditionally, weather forecasts have been made based on numerical models, so-called Numerical Weather Predictions (NWP). Data-driven machine learning models and in particular deep neural networks offer the potential as surrogate models for fast and (energy) efficient emulation of NWP models. As part of the SmartWeather21 project, we want to investigate which DL architecture for NWP is best suited for weather forecasting in a warmer climate, based on the high-resolution climate projections generated with ICON as part of WarmWorld. To incorporate the high resolutions of the WarmWorld climate projections, we will develop data- and model-parallel approaches and architectures for weather forecasting in a warmer climate. Furthermore, we will investigate which (learnable combinations of) variables from the ICON climate projections provide the best, physically plausible forecast accuracy for weather prediction in a warmer climate. With this in mind, we develop dimension reduction techniques for the various input variables that learn a latent, lower-dimensional representation based on the accuracy of the downstream weather forecast as an upstream task. The increased spatial resolution of the ICON simulations also allows conclusions to be drawn about the uncertainties of individual input and output variables at lower resolutions. As part of SmartWeather21, we will develop methods that parameterise these uncertainties using probability distributions and use them as input variables with lower spatial resolution in DL-based weather models. These can be propagated through the model as part of probabilistic forecasts.
“ICON-SmART” addresses the role of aerosols and atmospheric chemistry for the simulation of seasonal to decadal climate variability and change. To this end, the project will enhance the capabilities of the coupled composition, weather and climate modelling system ICON-ART (ICON, icosahedral nonhydrostatic model – developed by DWD, MPI-M and DKRZ with the atmospheric composition module ART, aerosols and reactive trace gases – developed by KIT) for seasonal to decadal predictions and climate projections in seamless global to regional model configurations with ICON-Seamless-ART (ICON-SmART). Based on previous work, chemistry is a promising candidate for speed-up by machine learning. In addition, the project will explore machine learning approaches for other processes. The ICON-SmART model system will provide scientists, forecasters and policy-makers with a novel tool to investigate atmospheric composition in a changing climate and allows us to answer questions that have been previously out of reach.
The AquaINFRA project aims to develop a virtual environment equipped with FAIR multi-disciplinary data and services to support marine and freshwater scientists and stakeholders restoring healthy oceans, seas, coastal and inland waters. The AquaINFRA virtual environment will enable the target stakeholders to store, share, access, analyse and process research data and other research digital objects from their own discipline, across research infrastructures, disciplines and national borders leveraging on EOSC and the other existing operational dataspaces. Besides supporting the ongoing development of the EOSC as an overarching research infrastructure, AquaINFRA is addressing the specific need for enabling researchers from the marine and freshwater communities to work and collaborate across those two domains.
The amount and diversity of digitally available environmental data is continuously increasing. However, they are often hardly accessible or scientifically usable. The datasets frequently lack sufficient metadata description, are stored in a variety of data formats, and are still saved on local storage devices instead of data portals or repositories. Based on the virtual research environment V-FOR-WaTer, which was developed in a previous project, ISABEL aims at making this data abundance available in an easy-to-use web portal. Environmental scientists get access to data from different sources, e.g. state offices or university projects, and can share their own data through the portal. Integrated tools help to easily pre-process and scale the data and make them available in a consistent format. Further tools for more complex scientific analyses will be included. These are both implemented by the developers of the portal according to the requirements of the scientific community and contributed directly by the portal’s users. The possibility to store workflows together with the tools and respective data ensures reproducible data analysis. Additionally, interfaces with existing data repositories enable easy publication of the scientists’ data directly from the portal. ISABEL addresses the needs of researchers of hydrology and environmental science to not only find and access datasets but also conduct efficient data-based learning with standardised tools and reproducible workflows.
iMagine is an EU-funded project that provides a portfolio of ‘free at the point of use’ image datasets, high-performance image analysis tools empowered with Artificial Intelligence (AI), and Best Practice documents for scientific image analysis. These services and materials enable better and more efficient processing and analysis of imaging data in marine and freshwater research, relevant to the overarching theme of ‘Healthy oceans, seas, coastal and inland waters’.
Research data management forms the basis for applying, for example, modern artificial intelligence methods to research questions. Therefore, research data management is an important component of the KIT Climate and Environment Center. In the SmaRD-AI project (short for Smart Research Data Management to facilitate Artificial Intelligence in Climate and Environmental Sciences), the IWG, IMK, GIK, and SCC at KIT are working closely together not only to make the treasure trove of climate and environmental data available at KIT accessible, but also to be able to analyze it in a structured way using tools. Translated with DeepL
The Exascale Earth System Modelling (PL-ExaESM) pilot lab explores specific concepts for applying Earth System models and their workflows to future exascale supercomputers.