Ozone temporal variability in the subarctic region: comparison of satellite measurements with numerical simulations
-
author:
Shved, G. M., Virolainen, Ya. A., Timofeyev, Yu. M., Ermolenko, S. I., Smyshlyaev, S. P., Motsakov, M. A., and Kirner, O.
-
place:
Izvestiya, Atmospheric Oceanic Physics, 54, 32-38, doi: 10.1134/S0001433817060111
- date: 2018
-
Fourier and wavelet spectra of time series for the ozone column abundance in the atmospheric 0–25 and 25–60 km layers are analyzed from SBUV satellite observations and from numerical simulations based on the RSHU and EMAC models. The analysis uses datasets for three subarctic locations (St. Petersburg, Harestua, and Kiruna) for 2000–2014. The Fourier and wavelet spectra show periodicities in the range from ~10 days to ~10 years and from ~1 day to ~2 years, respectively. The comparison of the spectra shows overall agreement between the observational and modeled datasets. However, the analysis has revealed differences both between the measurements and the models and between the models themselves. The differences primarily concern the Rossby wave period region and the 11-year and semiannual periodicities. Possible reasons are given for the differences between the models and the measurements.