
LESSON 5

Mass Properties Calculations

Objectives

■ Import a unigraphics express file and apply mass properties to the propeller.

Suggested Exercise Steps

- Open a new database and name it fin.db.
- Import the Express Neutral file prop_11.1.exp
- Create the material properties for steel and apply it to the model
- Review the Mass Properties
- Create a projection of the model, then create a surface from that projection. Define a field to represent the thickness of the model
- Again review the Mass Properties and compare it to the previous results
- Mesh the base of the solid

Exercise Procedure

Source:

Import File:

File/New		Open a Databa
New Database Name:	fin	
OK		
Tolerance: Analysis Code:	◆ Based on Model MSC/NASTRAN	
Analysis Code:	MSC/NASTRAN	
Analysis Type:	Structural	
OK		

Express Neutral

prop_11.1.exp

Apply

A message form appears.

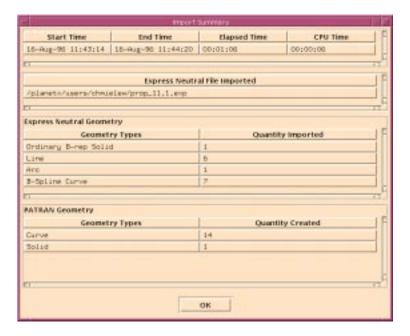


No For All

Close the *Import Summary* form.

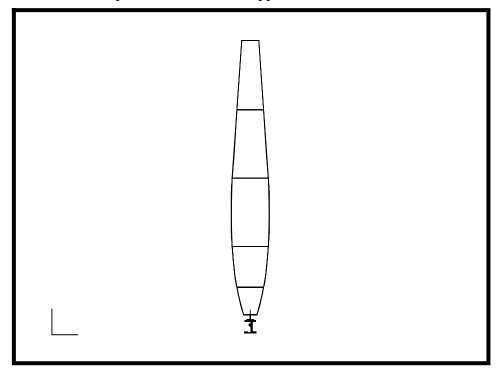
OK

The *Import Tolerances* form appears. A tolerance mismatch may have caused the model to import improperly. The model should therefore be re-imported with a new model tolerance.



Apply

A message form appears. Again, do not duplicate geometry.


No for All

A new Import Summary form appears.

OK

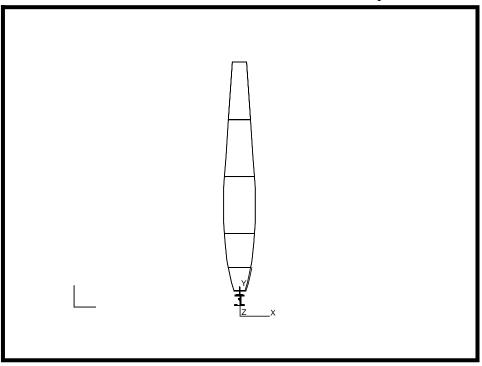
The imported model should appear as shown below.

3.	To keep the imported solid separate from geometry that will be created later in the exercise, create a group named solid and add all solids to it.			
	Group/Create			
	Action:	Create		
	New Group Name:	solid		
	■ Unpost All Other Groups			
	In order to select Solid 1 , use the following entity select icons:			
	• ্ জ	\bigcirc		
	Geometric Entity	Solid		
	Entity Selection:	Solid 1		
	Apply			
	Cancel			
4.	Create a material named steel.			
Create a New Material	♦ Materials			
	Action:	Create		
	Object:	Isotropic		
	Method:	Manual Input		
	Material Name:	steel		
	Input Properties			
	The <i>Input Options</i> form appears.			
	Elastic Modulus:	30e6		
	Poisson Ratio:	0.3		
	Density:	0.0029		
	Apply			
	The phrase Linear Elastic - [,,,,] - <i>Constitutive Models</i> box.	[Active] appears in the Current		
	Cancel			

LESSON 5

5.

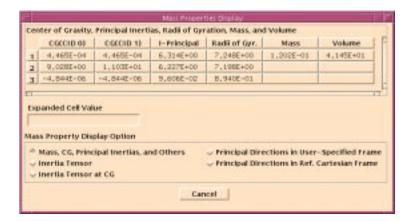
Apply


Mass Properties Calculations

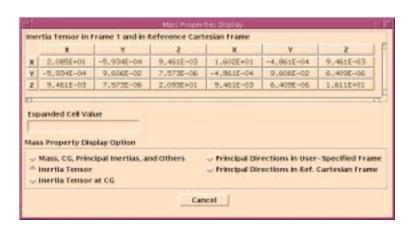
Create a property set to apply to the solid model. Name it **fin_3d_solid**. **◆ Properties** Action: Create **3D** Dimension: Solid Type: fin_3d_solid Property Set Name: **Input Properties...** The Input Properties form appears. Material Name: steel OK Select Members: Solid 1 Add **Apply** Create a user-defined coordinate frame at the base of the fin. **♦** Geometry Create Action: Object: Coord Method: **3Point** Origin: [0 -2 0]Point on Axis 3: [0 -2 1]Point on Plane 1-3: [1 - 20]

Create a

Property Set


The new coordinate frame can be seen in the viewport.

Determine Mass Properties 6. Determine the mass properties for the solid model of the fin.


Tools/Mass Properties	
Action:	Show
Dimension:	3D
Define Region	
The Region for Mass Properties	s form appears.
Select Groups:	solid
OK	
Relative to Coordinate Frame:	select newly created Coord 1
■ Create Princ. Coord. Frame	
Apply	

The Mass Properties Display form appears.

View the inertia tensor.

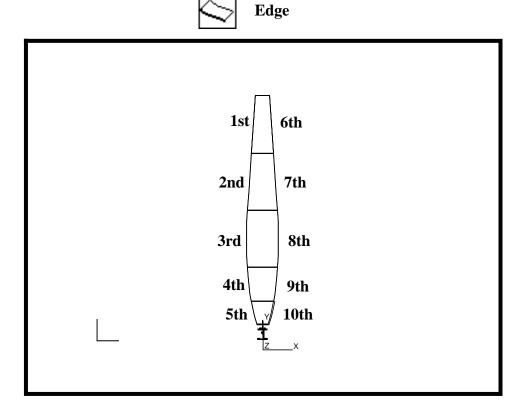
Mass Property Display Option: ◆ Inertia Tensor

Cancel

Close the Mass Properties Form.

Cancel

7. Create a group named **fin_2d**. This group will contain a 2D projection of the solid model.


Group/Create...

Action: Create

		New Group Name:	fin_2d
		■ Make Current	
		☐ Unpost All Other Grou	ips
		Apply	
		Cancel	
Create a	8.	Create a 2D projection of	the solid fin geometry.
Projection		♦ Geometry	
		Action:	Create
		Object	Curve
		Method	Project
		Project Onto:	Plane
		Option:	Normal to Plane

□ Auto Execute

Select the curves that define the left and right sides of the blade. Click on the **Edge** icon to select the edge of the solid, and shift-click to select the edges in the following order:

Curve List:

see figure above

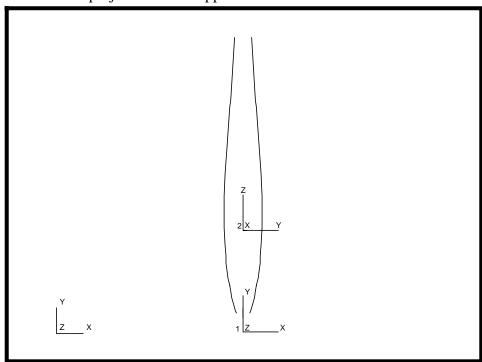
Plane List:

Coord 0.3

To select Coord 0.3 click on the Axis 3 icon

Then hold down the middle mouse button to rotate the coordinate axis until you can screen select the **Z** axis.

Apply


9. Unpost all other groups to view the projection only

Group/Post...

Action: Post
Select Groups to Post: fin_2d

Apply Cancel

The projected curves appear as follows.

10. Create a surface using the two projected curves.

Action: Create

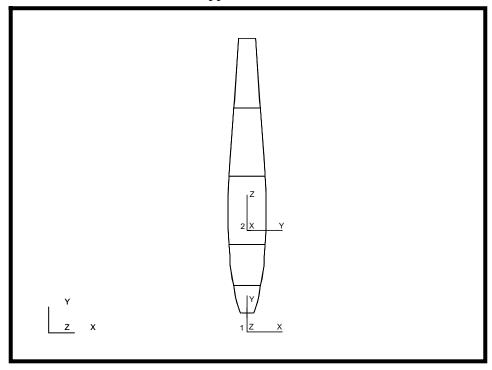
Object: Surface

Option: 2 Curve

To select the curves, be sure to use the following entity select icon:

Curve

Curve


Starting Curve List: select all curves on left side

Ending Curve List: select all curves on right side

The function autoexecutes.

Method:

The surface should appear as follows:.

- 11. Create a field to represent the thickness of the surface.
 - **♦** Fields

Action:

Create

Object:

Spatial

Method:

PCL Function

Field name:

fin_thickness

Field Type:

♦ Scalar

Coordinate System Type:

♦ Real

Coordinate System

Coord 0

Scalar Function ('X, 'Y, 'Z):

0.3*abs(cosr(0.5*'X))

Apply

12. Create a property set for the 2D surface model.

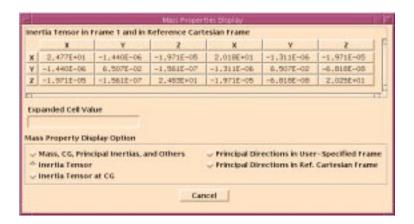
◆ Properties

Action:

Create

Create a Property Set

Create a Field


Dimension:	2D
Туре:	Shell
• •	
Property Set Name:	fin_2d_shell
Input Properties	
The <i>Input Properties</i> form ap	opears.
Material Name:	m:steel
Thickness:	f:fin_thickness
ОК	
Select Members:	Surface 1:5
Add	
Apply	
13. Check the mass properties for	the surface.
Tools/Mass Properties	
Action:	Show
Dimension:	3D
Define Region	
The Region for Mass Prope	rties form appears.
Select Groups:	fin_2d
ОК	
Apply	

Determine

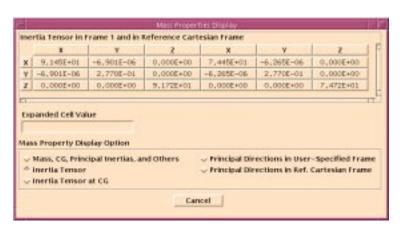
Properties

Mass

The *Mass Properties Display* form appears. Compare the inertia tensor to the one calculated for the solid.

Cancel

Check the *Warnings* form. Note that the curves and points were excluded from the calculation.



OK

14. Calculate mass properties again using the 2D plane stress. The thickness of the blade is set to 1 by default.

Action:	Show
Dimension:	2D Plane Stress
Apply	

The *Mass Properties Display* form appears. Compare the inertia tensor to the ones previously generated.

Cancel

Cancel

Close the warning form.

OK

15. Tet mesh the base of the solid model of the fin. The geometry of the blade is very simple to mesh, so it will not be discussed. Besides, the base of the fin is usually where the focus of the analysis is directed, as that is usually the region of highest stresses.

Post the **solid** group and unpost all other groups.

Group/Post...

Select Groups to Post:

solid

Apply

Cancel

Create a plane at the base of the blade to cut the solid.

♦ Geometry

Action:

Create

Object:

Plane

Method

Vector Normal

Plane Offset Distance:

0.35

Surface Mesh

Create a

Vector List:	Coord 0.2
Break the solid using the plane.	
Action:	Edit
Object:	Solid
Method:	Break
Option:	Plane
□ Auto Execute	
Solid List:	Solid 1
Break Plane List:	Plane 1
Apply	

A message form appears. Do not delete the original solids.

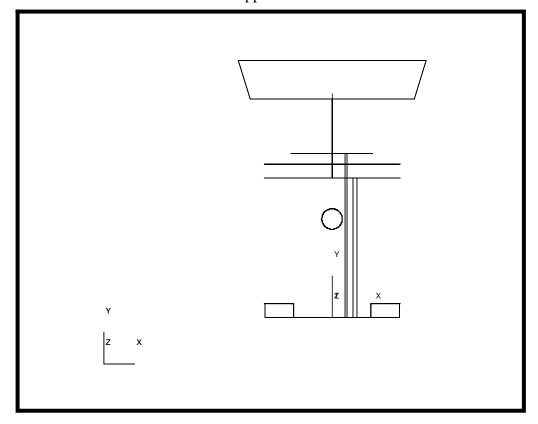
No For All

Clean up the display using the following toolbar icon:

Refresh Graphics

Create a new group named **solid_with_tetmesh** and add the base of the newly trimmed solid to it. Unpost all other groups.

Group/Create... Action: New Group Name: ■ Unpost All Other Groups Entity Selection Solid 2 (the base of the fin) Apply


Cancel

Now, zoom in on the base of the fin using the following toolbar icon:

View Corners

The new solid should appear as follows.

Now, mesh the solid base.

♦ Finite Elements

Action:
Create

Object:
Mesh

Method
Solid

Global Edge Length:
0.31

Mesher:
◆ Tetmesh

Input List:
select the base solid

Apply

16. Conduct a Mass Properties calculation on the base of the fin.

First, assign properties to the base of the solid.

♦ Properties	
Action:	Create
Dimension:	3D
Туре:	Solid
Property Set Name:	base_props
Input Properties	
The Input Properties form appear	rs.
Material Name:	steel
OK	
Solid Eleme	nt
Select Members:	select all solid elements
Add	server and some elements
Apply	
Now, create a group called mesh .	
Group/Create	
Action:	Create
New Group Name:	mesh
■ Unpost All Other Groups	
Entity Selection	Add All FEM
Apply	

17. Perform a Mass Properties calculation on the base.

Tools/Mass Properties...

Action:	Show
Dimension:	3D
Define Region	
The Region for Mass P	roperties form appears.
Include:	FEM
Select Groups:	mesh
OK	
■ Create Princ. Coord.	Frame
Apply	

This ends the exercise.