
LESSON 2

Cylinder with T-Beam Stiffeners

Objectives:

- Create a cylinder and apply loads.
- Use the beam library to add stiffeners to the cylinder.

Exercise Procedure:

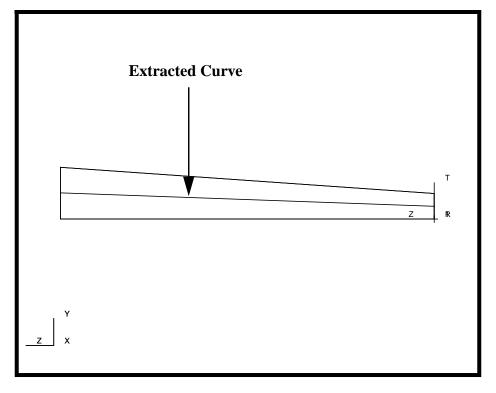
File/New ...

New Database Name:

1. Open a new database. Name it **nozzle**.

Type **p3** in your xterm. The *Main Window* and *Command Window* will appear.

nozzle


OK	
The viewport (PATRAN's graph along with a <i>New Model Pre Model Preference</i> sets all thoptions inside MSC/PATRAN.	eference form. The New
Tolerance:	♦ Default
Analysis Code:	MSC/NASTRAN
Analysis Type:	Structural
OK	
2. Create a cylindrical coord	linate frame.
♦ Geometry	
Action:	Create
Object:	Coord
Method:	3 Point
Type:	Cylindrical
Apply	
3. Create the geometry.	
3. Create the geometry. Geometry	
,	Create
♦ Geometry	Create Curve

Refer. Coordinate Frame:	select new system
•	
Vector Coordinates List:	<10, 0, 30>
Origin Coordinates List:	[10, 0, 0]
Apply	
Action:	Create
Object:	Surface
Method:	Revolve
Total Angle:	12
Curve List:	select curve
The function autoexecutes. N following toolbar icon:	ow, change the view by selecting the
Right S	ide View
4. Extract a curve down the to 90%.	e middle of the model and scale it
Action:	Create
Object:	Curve
Method:	Extract
Option:	Parametric
Curve Direction:	♦ u Direction
v Parametric Value:	0.5

select surface

Surface List:

The function autoexecutes.

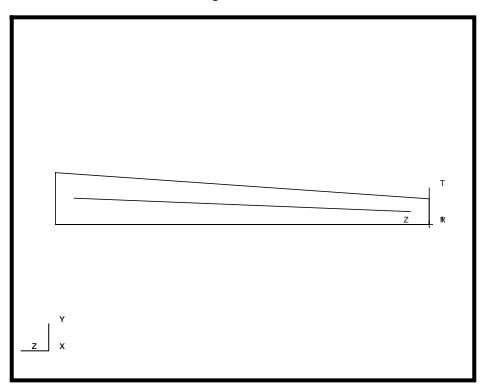
Action:	Create
Object:	Point
Method:	Extract
♦ Equal Arc Length	
u Parametric Value:	0.5
Curve List:	select extracted curve

The function autoexecutes and creates a point in the center of the extracted curve. To better see where this point is located, turn on labels using the following toolbar icon:

Action:	Transform
Object:	Curve

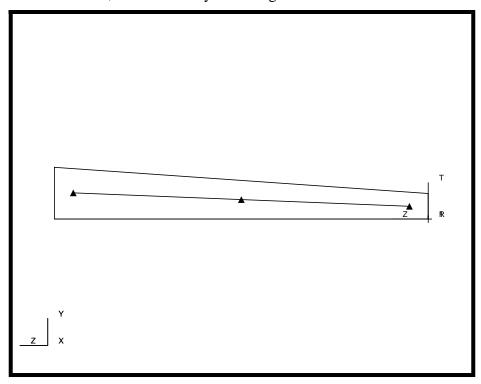
Method: Scale Origin of Scaling: select extracted point Scale Factor: 0.9, 1.0, 0.9 **■** Delete Original Curves Curve List: select extracted curve

The function autoexecutes. When prompted if you wish to delete the original curves, respond with:


Yes

Clean up the display using the following icons:

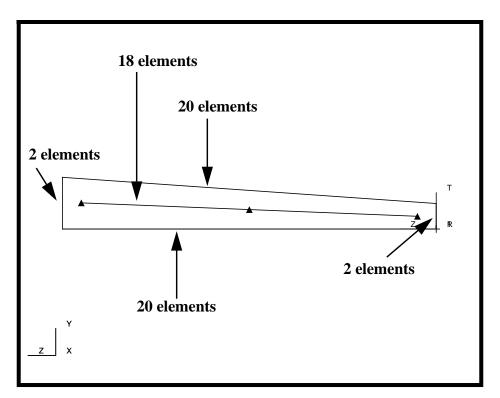
Refresh Graphics Hide Labels


5. Associate the curve to the surface.

Action: **Associate** Curve

Object:

Method:	Surface
Curve List:	select extracted curve
Surface List:	select surface

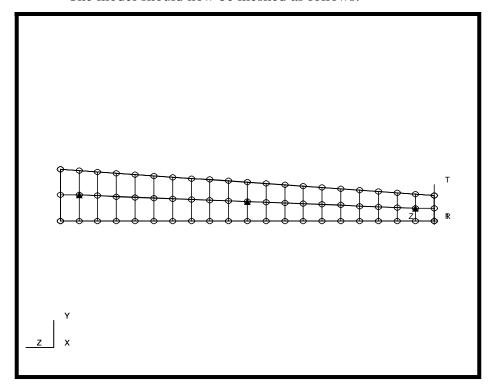

The function autoexecutes. The curve is now associated with the surface, as indicated by the triangle.

6. Mesh the model.

♦ Finite Elements

Action:	Create
Object:	Mesh Seed
Type:	Uniform
Number of Elements:	18

Curve List: select associated curve **Apply** Number of Elements: 2 shift click to select Curve List: left and right edge Apply 20 Number of Elements: Curve List: shift click to select top and bottom edge **Apply** Action: Create Object: Mesh


Surface

Global Edge Length:

Type:

Mesher:	♦ Paver
Surface List:	select surface
Apply	

The model should now be meshed as follows:

7. Create the material **alum**.

Poisson's Ratio:

♦ Materials Action: Create Object: Isotropic Method: Manual Input Material Name: alum Input Properties... 10.0E6

0.3

Density:	.101			
Apply				
Cancel				
8. Create two fields to be represent the thickness, a sinusoidally varrying p	and the other wil be used to apply			
First, create the field thicknes	s.			
♦ Fields				
Action:	Create			
Object:	Spatial			
Method:	PCL Function			
Field Name:	thickness			
Field Type:	♦ Scalar			
Coord. System Type:	♦ Real			
Coordinate System:	select cyl. coord. system			
Scalar Function ('R 'T 'Z):	0.15+0.0025*'Z			
Apply				
Now, create the field edge_loa	nd.			
Action:	Create			
Object:	Spatial			
Method:	PCL Function			
Field Name:	edge_load			
Field Type:	♦ Scalar			
Coord. System Type:	♦ Real			
Coordinate System:	select cyl. coord. system			
Scalar Function ('R 'T 'Z):	100*sinr('Z)			

Apply

9. Create the element properties for both the cylinder and the T-beam stiffener.

First, create a 2D shell property called **plate** for the cylinder.

♦ Properties	
Action:	Create
Dimension:	2D
Туре:	Shell
Property Set Name:	plate
Input Properties	
Material Name:	alum
Thickness:	f:thickness
OK	
Select Members:	select surface
Add	
Apply	
Next, create a property set cal	lled stiffener .
Action:	Create
Dimension:	1D
Type:	Beam
Property Set Name:	stiffener
Input Properties	

■ Use Beam Section

Click on the following icon to create the beam cross section: Create Sections **Beam Library** t_section New Section Name: Click on the following section type icon: **T-Section** *W*: 1.0 *H*: 1.0 *t1:* 0.1 *t*2: 0.08 Calculate/Display When done viewing the diminsional specifications, close the form. Close **OK** Material Name: alum <1, 0, 0> Coord 1 Bar Orientation: **OK** Select Members: select associated curve Add **Apply** Create the sinusoidal pressure load called **press**.

♦ Loads/BCs

Action: Create

Object:	Pressure
Туре:	Element Uniform
New Set Name:	press
Target Element Type:	2D
Input Data	
Top Surface Pressure:	f:edge_load
OK	
Select Application Region	
Select Surfaces or Edges:	select surface
Add	
OK	
Apply	
11. Change the view of the morpressure.	odel to better display the applied
Viewing/Angles	
Angle:	-42, -69, -3
Apply	
Cancel	
Display / Load/BC/Elem. Prop	S
Vectors	
Length:	◆ Scaled - Screen Relative
Scale Factor:	0.1
■ Show LBC/El. Prop. Values	
Apply	
Cancel	

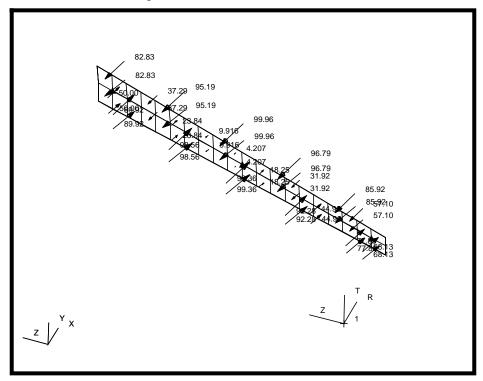
■ Show on FEM Only

■ Show LBC/El. Prop. Vectors

Apply

Cancel

If the pressure load is not seen on the screen, plot it by doing the following:


Action: Plot Markers

Assigned Load/BC Sets: Press_press

Select Groups: default_group

Apply

The following should now be seen:

12. Transform the model by rotating the surface about the cylindrical axis.

Group/Transform ...

Action: Transform

Method: Rotate

Properties:	Transform
Reference Coord. Frame:	select cyl. coord. system
Rotation Angle:	12.0
Repeat Count:	14
Apply	
Cancel	
This leaves the screen a little me Clean up the display by doing the	essy, though, with all the loads applied. he following:
Display /Loads/BCs/El. Props.	••
Loads/BCs:	Hide All
Apply	
Cancel	
13. Equivalence the nodes of	the model that you just rotated
♦ Finite Elements	
Action:	Equivalence
Object:	All
Method:	Tolerance Cube
Apply	
14. Show the properties of the	e shell thickness.
♦ Properties	
Action:	Show
Select Property:	Thickness
Display Method:	Scalar Plot
Select Groups:	

♦ Current Viewport

d	ef	au	llt	qr	O.	u	p

Apply

To get a better view of the curvature of the model, select the following toolbar icon:

Smooth Shaded

Close the database.

File/Close...

This ends the exercise.