LESSON 12

Material Property Definition

Objective:

Create a material that has temperature dependent properties.

Model Description:

In this exercise you will create several fields that represent the variation of material properties with respect to temperature. You will use fields to define a composite material. This exercise has been designed to contain the required steps that are necessary to create almost any material definition in MSC/PATRAN.

Finite Element Mesh: Global Edge Length= 0.5 in QUAD4 elements

Analysis Code: MSC/NASTRAN

Properties: Thickness = 0.020 in 2d Orthotropic material name: mat_orth2d

Figure 12-1

T (°F)	E ₁₁ (Msi)	E ₂₂ (Msi)	v ₁₂	G ₁₂ (Msi)	G ₂₃ (Msi)	G ₁₃ (Msi)	α ₁₁ (Mils/ in/°F)	$\begin{array}{c} \alpha_{22} \\ (Mils/\\ in/^{\circ}F) \end{array}$
800	1.47	0.364	0.320	0.119	0.227	0.335	0.50	58.90
1200	1.33	0.183	0.320	0.060	0.196	0.303	0.00	71.10
1500	1.25	0.161	0.320	0.053	0.199	0.300	-0.25	15.60

Table 1: Temperature Dependent Material Properties

Suggested Exercise Steps:

- Create a new database named **material.db**.
- Change the *Tolerance* to **Default** and the *Analysis Code* to MSC/NASTRAN.
- Create the geometry and the finite element mesh using the information shown in Figure 12-1.
- Create an individual field for each material property listed in Table 1 above that varies with respect to temperature. Use E11, E22, G12, G13, G23, ALPHA11, and ALPHA22 for the field names.
- Create a 2D Orthotropic material named, **mat_orth2d**, that incorporates the material property fields.
- Define a shell element property named **Prop_1**. Use the **mat_orth2d** material to complete its definition and apply it to all the finite elements of your model.

Exercise Procedure:

1. Create a new database and name it **material.db**. Select the **Default** *Tolerance* and **MSC/NASTRAN** *Analysis Code* in the *New Model Preferences* form.

File/New Database...

Action:

Create

Object:	Surface
Method:	XYZ
Vector Coordinate List	<5, 1, 0>
Apply	

To create the finite element model, click on the **Finite Elements** radio button in the *Main Form*.

Finite Elements	
Action:	Create
Object:	Mesh
Type:	Surface
Global Edge Length	0.5
Element Topology	QUAD 4
Surface List	Surface 1
Apply	

Your model should look like the one shown below.

Temperature Dependent Properties 3. Create an individual field for each material property listed in Table 1 above that varies with respect to temperature. Use E11, E22, G12, G13, G23, ALPHA11, and ALPHA22 for the field names.

To define the 2D Orthotropic material, you must create the fields which will define the variation of each material property with respect to temperature.

Action:CreateObject:Material PropertyMethod:Tabular Input

Using the data listed in Table 1 of this exercise, define the field for E11.

Input Data...

This will open the *1D Material Scalar Table Data* form. Click in the value cells and enter the values shown in Table 1 for E11. Your form should look like this.

ta.		
	T	Value
	8,00000E+02	1.47000E+00
	1,20000E+03	1,33000E+00
1	1.50000E+03	1.25000E+00
	and the second second	

OK	
Apply	

Repeat these steps to create the remaining fields for the other temperature dependent material properties. Use the following names for these fields: (See table 1 on page 12-3)

E22, G12, G13, G23, ALPHA11, ALPHA22.

4. Create a 2D orthotropic material named **mat_orth2d** that incorporates the material property fields.

Materials

Action:

Object:

Method:

Material Name

Input Properties...

Constitutive Model

Create
2D Orthotropic
Manual Input
mat_orth2d

Specify each material property by clicking in the Value databoxes on the *Input Options* form, and picking the appropriate field name from the *Temperature Dependent Fields* listbox that will appear at the bottom of the form. Since the Poisson's Ratio listed in Table 1 is constant at all temperatures, enter its value manually.

Elastic Modulus 11	E11
Elastic Modulus 22	E22
Poisson's Ratio	0.32
Shear Modulus 12	G12
Shear Modulus 23	G23
Shear Modulus 13	G13
Thermal Expan. Coeff 11	AL
Thermal Expan. Coeff 22	AL
Apply	

E11	
E22	
0.32	
G12	
G23	
G13	
ALPHA11	
ALPHA22	1

Apply Cancel

2D Orthotropic Material

Apply Material to Model

5. Define a 2D shell element property named **Prop_1**. Use the **mat_orth2d** material to complete its definition and apply it to all the finite elements of your model.

Properties

Action: Dimension:

Type:

Property Set Name

Options:

2D Shell prop_1

m:mat_orth2d

0.020

Create

-

Homogeneous

Standard Formulation \Box

Input Properties...

Material Name

Thickness

OK

Select Members

Select All Finite Elements

You may have to click on the **2d Element** icon.

Add	
Apply	

File/Quit