

- Produce a MSC/NASTRAN input file that represent beam and load
- Submit for analysis.
- Find normal modes (natural frequencies).

MSC/NASTRAN 102 Exercise Workbook A-1b-3

Model Description:

The goal of this example is to analyze a stiffened model. In this case, the beam from Appendix 1a. with a 1×10^7 N force applied.

This is no longer a simple normal modes analysis. Instead we will be using a nonlinear static solution (SOL 106) with (PARAM, NMLOOP and METHOD and EIGRL).

Figure A-1b.1 below is a finite element representation of the beam. One end is pinned in 3 translations and one rotation. The other is pinned in 2 translations and one rotation with a 1×10^7 N force applied.

Figure A-1b.1-Grid Coordinates and Element Connectivities

(1234)																	(234)
▶ ⊳⊳⊉ 234 1	2	2	3	3	4	4	5	5	<u>6</u>	6	7	7	8	8	9	9	<u>xoo.oiq</u> 1x10 ⁷ N

Theoretical Solution

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \left(1 + \frac{1}{Kr} \frac{Pl^2}{EI} \right) \right]^{1/2}$$

For Mode 1, Kr = 9.87

$$fn = \frac{9.87}{2\pi} \left[\frac{(2.0684 \times 10^5)(1.0417 \times 10^6)}{(7.8334 \times 10^{-9})(5 \times 10^3)(1.0 \times 10^3)^4} x \left(1 + \frac{1}{9.87} \frac{(1 \times 10^7)(1 \times 10^3)^2}{(2.0684 \times 10^5)(1.0417 \times 10^6)} \right) \right]^{1/2}$$
$$f_n = 278.22 Hz$$

For Static Load

$$\Delta = \frac{PL}{AE}$$

$$\Delta = \frac{(1 \times 10^{7})(1 \times 10^{3})}{(5 \times 10^{3})(2.0684 \times 10^{5})}$$
$$\Delta = 9.67mm$$

Table A-1b.1

Length	1.0 x 10 ³ mm
Elastic Modulus	2.0684 x 10 ⁵ MPa
Density	7.8334 x 10 ⁻⁹ N-sec ² /mm ⁴
Poisson's Ratio	0.32
Area	$5 \times 10^3 \mathrm{mm}^2$
I ₁	1.0417 x 10 ⁶ mm ⁴
Force	1 x 10 ⁷ N

Suggested Exercise Steps

- Open database created in Problem 1a in order to modify it, adding a load and reanalyze.
- Create 1×10^7 N force applied at one end (FORCE).
- Make sure analysis is set to nonlinear static (SOL 106).
- Prepare nonlinear analysis to also analyze for normal mode (PARAM NMLOOP, EIGRL, PARAM LGDISP, NLPARM).
- Review the results, specifically the eigenvectors.

ID SEMINAR, PROB1

CEND

BEGIN BULK

A-1b-8 MSC/NASTRAN 102 Exercise Workbook

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC/PATRAN for generating an input file should go to Step 6, otherwise, proceed to step 2.
- 2. Open database created in Appendix Problem 1a named probap1.db.

File/Open Database

Existing Database Name

probap1

OK

3. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

4. Create force.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Force <*F1 F2 F3*>

OK

Select Application Region...

Select Geometry Entities

OK Apply

Create	
Force	
Nodal	
pull	

<1e7, , >

Point 2

A-1b-11

5. Now, you will generate the input file for analysis.

♦ Analysis

Action:

Object:

Method

Job Name

Solution Type...

Solution Type:

Solution Parameters ...

<deselect Automatic Constraints>

Mass Calculation:

Data Deck Echo:

OK

OK

Direct Text Input...

- ◆ Case Control Section
- Bulk Data Section

OK

Subcase Create...

Available Subcases

Subcase Parameters...

Number of Load Increments =

Analyze

Entire Model

Analysis Deck

probap1b

♦ NONLINEAR STATIC

□ Automatic Contraints

Coupled None

METHOD = 10

PARAM, NMLOOP, 5 EIGRL, 10, , , 3

Default

5

MSC/NASTRAN 102 Exercise Workbook

An MSC/NASTRAN input file called **probap1b.bdf** will be generated. The process of translating your model into an input file is called Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/PATRAN Users should proceed to step 7.

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data from Table A-1b.1. The result should be similar to the output below.

6. MSC/NASTRANInputFile: probap1b.dat

SOL 100	5									
TIME 60	00									
CEND										
\$										
TITLT =	= NORMAL M	ODES WITH	H DIFFERI	ENTIAL ST	FIFFNESS					
METHOD	= 10									
SUBCASE	I 1									
NLPA	ARM = 1									
SPC	= 1									
LOAI) = 1									
DISI	PLACEMENT (SORT1,REA	AL)=ALL							
\$										
BEGIN H	BULK									
PARAM	COUPMASS	1								
PARAM	LGDISP	1								
NLPARM	1	5		AUTO	5	25	PW	NO	+	A
+	A	.001	17							
PARAM,1	NMLOOP,5									
\$										
EIGRL,	10,,,3									
PBAR	1	1	5000.	1.04+6						
CBAR	1	1	1	2	0.	1.	0.			
CBAR	2	1	2	3	0.	1.	0.			
CBAR	3	1	3	4	0.	1.	0.			
CBAR	4	1	4	5	0.	1.	0.			
CBAR	5	1	5	6	0.	1.	0.			
CBAR	6	1	6	7	0.	1.	0.			
CBAR	7	1	7	8	0.	1.	0.			
CBAR	8	1	8	9	0.	1.	0.			
CBAR	9	1	9	10	0.	1.	0.			
CBAR	10	1	10	11	0.	1.	0.			
\$										
MAT1	1	206840.		.32	7.83-9					
GRID	1		0.	0.	0.		345			
GRID	2		100.000	0.	0.		345			

Appen	dix 1b	Norma	l Mode	es with	Diffe	rential	Stiffness	(SI
GRID	3		200.000	0.	0.		345	
GRID	4		300.000	0.	0.		345	
GRID	5		400.000	0.	0.		345	
GRID	б		500.	0.	0.		345	
GRID	7		600.000	0.	0.		345	
GRID	8		700.000	0.	0.		345	
GRID	9		800.000	0.	0.		345	
GRID	10		900.000	0.	0.		345	
GRID	11		1000.	0.	0.		345	
SPC1	1	1234	1					
SPC1	1	234	11					
FORCE	1	11	0	1.+7	1.	0.	0.	
ENDDATA								

Submit the input file for analysis

- 7. Submit the input file to MSC/NASTRAN for analysis.
 - 7a. To submit the MSC/PATRAN .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran probap1b.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 7b. To submit the MSC/NASTRAN .dat file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran probap1b scr=yes**. Monitor the run using the UNIX **ps** command.
- 8. When the run is completed, edit the **probap1b.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 9. While still editing **probap1b.f06**, search for the word:
- E I G E N (spaces are necessary)

What are the first three natural frequencies?

1st = ____Hz

2nd = _____Hz

3rd = _____Hz

Comparison of Results

10. Compare the results obtained in the **.f06** file with the results on the following page:

REAL EIGENVALUES

MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED
NO.	ORDER				MASS	STIFFNESS
1	1	3.056203E+06	1.748200E+03	2.782346E+02	1.000000E+00	3.056203E+06
2	2	1.864932E+07	4.318486E+03	6.873084E+02	1.000000E+00	1.864932E+07
3	3	6.517956E+07	8.073386E+03	1.284919E+03	1.000000E+00	6.517956E+07

11. MSC/NASTRAN Users have finished this exercise. MSC/ PATRAN Users should proceed to the next step.

12. Proceed with the Reverse Translation process, that is importing the **probap1b.op2** results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method

ŌK

Apply

Select Results File...

Select Results File

Read Output2 Result Entities

Translate

probap1b.op2

When the translation is complete bring up the *Results* form.

♦ Results

Form Type:

Select Results Cases

Select Deformation Result

Basic							
1.1-Default, Mode 1:Freq=278.23							
1.1 Eigenvectors, Translational							

Apply

To reset the graphics, click on this icon:

Reset Graphics

You can go back and select any *Results Case*, *Fringe Results or Deformation Results* you are interested in.

Quit MSC/PATRAN when you are finished with this exercise.