WORKSHOP PROBLEM 12

Complex Modes of a Pile Driver

Objectives

- Define complex eigenvalue extraction parameters.
- Submit the file for analysis in MSC/NASTRAN.
- Compute complex modes.

12-2 MSC/NASTRAN 102 Exercise Workbook

Model Description:

The model is idealized as shown below in Figure 12.1. (Note that both a spring element and a damper element will be created connected Grid 2 and Grid 3.)

Figure 12.1-Model Description

Table	12.1
-------	------

m ₁	3.0 lb-sec ² /in
m ₂	1.5 lb-sec ² /in
K ₁	50,000 lb/in
K ₂	12,500 lb/in
C ₂	30 lb-sec/in

Suggested Exercise Steps

- Generate an input file and submit it to the MSC/NASTRAN solver for complex eigenvalue analysis.
- Generate a finite element representation of the pile driver using GRID, CONM2, CELAS, and CVISC elements.
- Define material (MAT1), and element (PELAS) and (PVISC) properties.
- Apply x-direction boundary constraint (SPC1).
- Specify complex eigenvalue extraction parameters (CMETHOD) and (EIGC).
- Prepare the model for complex eigenvalue analysis (SOL107).
- Review the results, specifically the complex eigenvalues.

ID SEMINAR, PROB12

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 12 Complex Modes of a Pile Driver

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC/PATRAN for generating an input file should go to Step 16, otherwise, proceed to step 2.
- 2. Create a new database and named prob12.db

File/New Database

New Database Name

prob12

MSC/NASTRAN

◆ Default

OK

In the New Model Preference form set the following:

Tolerance

Analysis code:

OK

Action:

Object:

Method:

3. Create the model by the edit method in **Finite Elements**.

□ Associate with Geometry

Node Location List

♦ Finite Elements

[0 0]	0]			
-------	----	--	--	--

Apply

Turn on the label and increase the node size by using the Quick Pick buttons.

Show Label

Node Size

4. Similarly, create Nodes 2 and 3.

Node	Location
Node 2	[100]
Node 3	[2 0 0]

5. Create the Bar Element for Node 1 and Node 2.

♦ Finite Element

Action:	Create
Object:	Element
Method:	Edit
Shape	Bar
<i>Node 1</i> =	Node 1
<i>Node</i> 2 =	Node 2
Apply	

6. Similarly, create the 2nd bar element by:

<i>Node 1 =</i>	Node 2
<i>Node</i> 2 =	Node 3

Apply

7. Create the 2 mass elements at Node 1 and Node 2.

♦ Finite Element

Apply
<i>Node 1</i> =
Element ID List
Shape:
Method:
Object:
Action:

Create
Element
Edit
Point
3
Node 1

Element ID Lis	t	4
<i>Node 1</i> =	[Node 2
Apply		

8. Create the damper elements connecting Node 2 and Node 3.

♦ Finite Element

Apply	
<i>Node</i> 2 =	
<i>Node 1</i> =	
Shape	
Method:	
Object:	
Action:	

Create	
Element	
Edit	
Bar	
Node 2	
Node 3	

9. Create Element Properties, (spring constant).

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties ...

Spring Constant:

DOF at Node 1:

DOF at Node 2:

OK

Application Region (In the select menu, select the **Beam Element** filter.)

Create	
1D	
Spring	
spring1	

50000	
UX	
UX	

Element 1

Add	
Apply	

10. Similarly, create the spring constant of 12,500 for the 2nd spring element.

spring2

Property Set Name:

Input Properties	
------------------	--

Spring Constant:

DOF at Node 1:

DOF at Node 2:

OK

Add

Apply

Application Region

12500
UX
UX

Element 2

11. Create Element Properties, (damper coefficient), for the damper element:

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Option(s)...

Input Properties ...

[Ext. Viscous Coeff.]

OK	

Application Region

Create	
1D	
Damper	
damper	
Viscous	

30

Element	5

MSC/NASTRAN 102 Exercise Workbook

Add	
Apply	

Create the mass properties of the mass elements. 12.

Properties

Action:

Dimension:

Type:

Property Set Name:

Option(s):

Input Properties ...

Mass:

OK

Create	
0D	
Mass	
mass1	
Lumped	

3			

Application Region

Element 3 (In the select menu, select the Point Element

filter.)

Point Element 0

Add Apply

Similarly, create the mass property of the 2nd mass element: 13.

Properties

Action:	Create
Dimension:	0D
Type:	Mass
Property Set Name:	mass2
Option:	Lumped

WORKSHOP 12 Complex Modes of a Pile Driver

Mass:	1.5
ОК	
Application Region	Element 4
Add	
Apply	
14. Create the constraint at t	he ground. Node 3.
◆ Load/BCs	
Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name:	constraint
Input Data	
Translations < T1 T2 T3 >	< 0, , >
ОК	
Select Application Region]
◆ FEM	_
Select Nodes:	Node 3
Add	
OK	
Apply	
15. Create the analysis deck.	
	A
Action:	Analyze
Object:	Entire Model
Method:	Analysis Deck
Job Name:	prob12

MSC/NASTRAN 102 Exercise Workbook

Solution Type...

Solution Type:

Solution Parameters ...

Formulation

Complex Eigenvalue...

Number of Desired Roots=

OK	
ОК	
ОК	
Apply	

♦ COMPLEX EIGENVALUES

Direct

4

Generating an input file for MSC/NASTRAN Users:

MSC/NASTRAN users can generate an input file using the data previously stated. The result should be similar to the output below.

16. MSC/NASTRAN input file: prob12.dat

```
ID SEMINAR, PROB12
SOL 107
TIME 5
CEND
TITLE= TWO-DOF MODEL (IMAC 8, PG 891)
SUBTITLE= COMPLEX MODES
DISPLACEMENT= ALL $ DEFAULT= REAL, IMAGINARY
SPC= 100
CMETHOD= 99
$
BEGIN BULK
Ŝ
$ COMPLEX EIGENVALUE EXTRACTION PARAMETERS
$
EIGC, 99, HESS, , , , , 4
$
$ DEFINE GRIDS, MASSES, AND STIFFNESSES
$ GRID 1 = EXCITER (X=2, MASS=3) 50K STIFFNESS BETWEEN GRIDS 1 AND 2
$ GRID 2 = PILE (X=1, MASS=3) 12.5K STIFFNESS BETWEEN GRIDS 2 AND 3
$ GRID 3 = BASE (X=0, FIX BASE)
$
GRID, 1, , 2., 0., 0.
GRID, 2, , 1., 0., 0.
GRID, 3, , 0., 0., 0.
GRDSET, , , , , , , , 23456
CELAS2, 1, 50000., 1, 1, 2, 1
CELAS2, 2, 12500., 2, 1, 3, 1
CONM2, 201, 1, , 3.0
CONM2, 202, 2, , 1.5
SPC, 100, 3, 1
$
$ DEFINE DAMPER OF 30 BETWEEN GRIDS 2 AND 3
$
CVISC, 101, 1, 2, 3
PVISC, 1, 30.
Ś
ENDDATA
```

Submitting the input file for analysis:

- 17. Submit the input file to MSC/NASTRAN for analysis.
 - 17a. To submit the MSC/PATRAN **.bdf** file, find an available UNIX shell window. At the command prompt enter **nastran prob12.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 17b. To submit the MSC/NASTRAN .dat file, find an available UNIX shell window and at the command prompt enter nastran prob12 scr=yes. Monitor the run using the UNIX ps command.
- 18. When the run is completed, edit the **prob12.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 19. While still editing **prob12.f06**, search for the word:

EIGENVALUE (spaces are necessary).

Comparison of Results

20. Compare the results obtained in the **.f06** file with the results on the following page:

DAMPING DAMPING COEFFICIENT 1.067907E-01 6.218695E-02 6.218695E-02 6.218695E-02 crincose		R3 crinchace		R3 crinch cr		R3	SUBCASE I	R 3
		000000		000000		000000		000000
<pre>f M A R Y FREQUENCY (CYCLES) (CYCLES) 7.931520E+00 3.756553E+01 7.931520E+00 3.756553E+01 3.756553E+01</pre>	Т	ж 	7		m	R2 000000000000000000000000000000000000	4	R2 000000000000000000000000000000000000
n N	NO.	R1	NO.	Ţ,	NO.	12	NO.	12
I V A L U E IMAG) 83521E+01 60312E+02 83521E+01 60312E+02	V E C T O R MAGINARY)		FECTOR AGINARY)	щ 000000 	TECTOR AGINARY)	н 000000 	' E C T O R IAGINARY)	н 000000
E I G E N GENVALUE (000 -4.9 000 -2.3 000 4.9 2.3	E I G E N (REAL/I	т н	I G E N V (REAL/IM	м Н	I G E N V (REAL/IN	б Н	I G E N V (REAL/IM	м Н
C O M P L E X EI (REAL) -2.660969EH -7.339031EH -7.339031EH -7.339031EH	, -4.983521E+01 0 M P L E X	Р Н 	-2.360312E+02 0 M P L E X E	000000 12 12	4.983521E+01 0 M P L E X E	000000	2.360312E+02 O M P L E X E	000000
EXTRACTION ORDER 2 3 1 4	= -2.660969E+00 C	T1 1.00000E+00 5.14119E-01 1.591320E-02 .0	= -7.339031E+00, C	T1 -4.241094E-01 -3.768431E-02 1.000000E+00 .0 .0	= -2.660969E+00, C	T1 00000E+00 0 8.514119E-01 -1.591320E-02 .0	= -7.339031E+00, C	T1 -4.241094E-01 3.768431E-02 1.000000E+00 .0 .0
R00T NO. 1 2 2 4	GENVALUE	адхи 17 Т	BENVALUE	н Н Н Н	BENVALUE	TYPE D D T	BENVALUE	H K F F F
	COMPLEX E.	POINT ID. 1 2 3	COMPLEX EI(POLNT ID. 1 2 3	COMPLEX EI(POINT ID. 1 2 3	COMPLEX EI(POLNT ID. 1 2 3

21. MSC/NASTRAN Users have finished this exercise. MSC/ PATRAN Users should proceed to the next step.

22. Proceed with the Reverse Translation process, that is importing the **prob12.op2** results file into MSC/PATRAN. To do this, return to the *Analysis* form and proceed as follows.

♦ Analysis

Action:

Object:

Method:

Select Results File...

Select Available Files

OK	
Apply	

23. View the results.

Results

Form Type:

Select Result Cases

Select Deformation Result

Read Output2

Result Entities

Translate

prob12.op2

Basic

<select one of the modes>

2.1-Eigenvectors, Translation