LESSON 7

Forced Convection on a Printed Circuit Board

Objectives:

- Create a geometric representation of a plate.
- Apply thermal loading of forced convection and heat fluxes to the model.
- Run a steady-state heat transfer analysis of the plate.

7-2 MSC/NASTRAN for Windows 104 Exercise Workbook

Model Description:

Below is shown a model for a printed circuit board, complete with dimensions, material properties, and thermal loading conditions. You will create this model and analyzye it to determine the steady-state temperature distribution.

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 2.1 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V2.1.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Turn off the Geometry Engine.

Tools/Advanced Geometry • Standard

3. Create the materials of the model.

First, create a material called **pcb**.

Model/Material...

Title:

pcb	
.066	

Conductivity, k:

OK

Next, create a material called **chip**.

Model/Material...

Title:

chip	
2.24	

Conductivity, k:

OK Cancel

4. Create the element properties for the model.

First, create a property for the printed circuit board called **pcb**.

Model/Property...

Title:

pcb		

Material:

1..pcb

Elem/Property Type	
Volume Elements:	● Solid
ОК	
ОК	
Next, create an element pr	operty for the chips called chip.

Title:

OK

Material:

chip	
2chip	

Finally, create a property for the thin membrane elements to be applied to the back of the board (since convection in MSC/NASTRAN for Windows currently does not accept faces of solid elements as valid forced convection regions).

Title:	back
Material:	1pcb
Elem/Property Type	

OK	

Thickness:

.001

• Membrane

OK	
Cancel	

5. Create the NASTRAN geometry for the model.

First, create surfaces to represent the board and the chips.

Geometry/Surface/Corners...

Create the board surface:

<i>X</i> :	<i>Y</i> :	<i>Z</i> :
0	0	0
9	0	0
9	6	0
0	6	0

Create the first chip surface:

<i>X:</i>	<i>Y</i> :	<i>Z</i> :
1	1	0
2	1	0
2	2.5	0
1	2.5	0

OK	
ОК	
OK	
OK	

OK	
OK	
OK	
OK	

And the second chip surface:

<i>X</i> :	<i>Y</i> :	<i>Z</i> :
4	4	0
5	4	0
5	5	0
4	5	0

OK	
ОК	
OK	
OK	

And the third chip surface:

<i>X:</i>	<i>Y</i> :	<i>Z</i> :
5.5	2	0
6.5	2	0
6.5	3	0
5.5	3	0

OK	
OK	
OK	
OK	

7-6 MSC/NASTRAN for Windows 104 Exercise Workbook

Cancel

To fit the display onto the screen, use the Autoscale feature.

View/Autoscale...

<CTRL A>

Next, extrude the surfaces into solids.

Geometry/Volume/Extrude...

Select the largest surface, representing the board.

ОК				
		X:	<i>Y</i> :	<i>Z</i> :
E	Base:	0	0	0
7	Tip:	0	0	1

OK

Select the three small surfaces, representing the chips.

OK	

	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Base:	0	0	0
Tip:	0	0	.25

OK	
Cancel	

6. Change the display to get a better view at the volume created.

Change the viewing angle.

View/Rotate...

<F8>

Isometric	
OK	

Your model should be like the following:

Figure 7-1: The isometric view of the model.

7. Set the default size for the mesh.

Mesh/Mesh Control/Default Size...

Size:

0.25

7-8 MSC/NASTRAN for Windows 104 Exercise Workbook

OK

8. Create the mesh for the model.

First, turn off all labels to keep the screen from getting "messy".

View/Options...

Quick Options		
Labels Off		
Done		
Apply		
OK		

Next, create the mesh for the pcb (the circuit board).

Mesh/Geometry/Volume...

Select the largest solid (the board).

OK

Property:

1..pcb

OK

Next, create the mesh for the chips.

Mesh/Geometry/Volume...

Select the three smaller solids (the chips).

Property:

2..chip

ОК

Create the membrane elements on the back of the board.

Mesh/Between...

Property:		3back	
Mesh Size /	/#Nodes/Dir	<i>1:</i> 37	
Mesh Size /	/#Nodes/Dir	2: 25	
OK			
<i>X</i> :	<i>Y</i> :	<i>Z</i> :	
0	0	1	OK
9	0	1	ОК
9	6	1	ОК
0	6	1	ОК

Create tube elements to help model the fluid flow.

Mesh/Between...

New Prop			
Title:		flow_tube	
Material:		1pcb	
Elem/Proper	ty Type		
		● Tube	
OK	7		
OK			
Mesh Size / #	Nodes / Dir 1:	37	
ОК			
<i>X:</i>	<i>Y</i> :	<i>Z</i> :	
0	3	-1	OK
9	3	-1	OK

LESSON 7

Finally, remove coincident nodes of the model.

Tools/Check/Coincident Nodes...

Select All OK

When asked, "OK to Specify Additional Range of Nodes to Merge?" respond with **No**.

No

Merge Coincident Entities

OK

The last thing you will need to do is reverse the normal direction of the membrane elements, so that the normal points towards the tube elements.

Modify/Update Elements/Reverse...

ID:

to:

921	
1784	

More	
OK	

	Reverse	Normals
--	---------	---------

OK

Your model should be like the following:

Figure 7-2: Meshed model

9. Create the thermal loading for the model.

First, a load set must first be created before creating the appropriate model loading.

Model/Load/Set...

Title:

thermal

OK

Next, apply a uniform default temperature to the model and define the parameters for the fluid flow.

Model/Load/Body...

(next to Thermal options)

Default Temperature:

\boxtimes	Active	
20		

Model/Load/Heat Transfer

Constant Coefficient:

Reynolds Exponent:

Prandtl Exponent (into fluid):

Prandtl Exponent (out of fluid):

Fluid Conductivity:

Fluid Specific Heat:

Fluid Viscosity:

Fluid Density:

0.3	
0.0	
0.0	
0.0	

6.66e-4	
456.2	
1.03e-6	
5.01e-5	

OK

Change the view to make applying the loads easier.

View/Rotate...

<F8>

Back	
OK	

Apply a heat flux to the chips in the model.

Model/Load/Elemental...

Hold shift and drag a box around the bottom edges of all chip elements.

OK

Your model should be like the following:

Figure 7-3: Model with thermal load and heat flux

7-14 MSC/NASTRAN for Windows 104 Exercise Workbook

10. Create the inlet temperature for the fluid flow.

Model/Load/Nodal...

Select the node on the left of the curve.

Apply forced convection to the back of the board in the model.

Model/Load/Elemental...

ID:	921
to:	1784
More	
OK	
Type:	Convection
	Forced Convection
	Disable Advection
Flow Rate:	.00833
Diameter:	1.0
Area Factor:	3
ОК	

Hold shift and drag a box around the tube elements.

Disable Convection

.008333	
1.0	
20	

Flow Rate:

Diameter:

Temperature:

OK

Cancel

11. Change the display to get a better view at the loaded model.

Change the viewing angle.

View/Rotate...

<F8>

Isometric	
OK	

Your model should be like the following:

Figure 7-4: The loaded model.

12. The direction of the convection load within the membrane property is in the wrong direction. In order to fix it, do the following:

Modify/Update Elements/Reverse...

ID:	921
to:	1784
More	
ОК	
	• Align First Edge to Vector
ОК	
Method^	(select Nodes)
Base Node ID:	37
Tip Node ID:	925
ОК	

13. Create the input file and run the analysis.

File/Analyze...

Analysis Type:

20..Steady-State Heat Transfer

Run Analysis

OK

When asked if you wish to save the model, respond Yes.

Yes

Save

File Name:

pcb2

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\pcb2.xdb", respond **Yes**.

Yes

14. Remove all geometry and thermal loading markers from the screen

View/Options...

In **Figure 7-5**, notice the temperature gradients around the chips, where all the heat is produced.

When done, exit MSC/NASTRAN for Windows.

File/Exit

This concludes this exercise.

7-22 MSC/NASTRAN for Windows 104 Exercise Workbook