LESSON 6

Free Convection on a Printed Circuit Board

Objectives:

- Create a geometric representation of a printed circuit board.
- Apply thermal loading of free convection and heat fluxes to the model.
- Run a steady-state heat transfer analysis of the board.

MSC/NASTRAN for Windows 104 Exercise Workbook 6-1

6-2 MSC/NASTRAN for Windows 104 Exercise Workbook

Model Description:

Below is shown a model for a printed circuit board, complete with dimensions, material properties, and thermal loading conditions. You will create this model and analyzye it to determine the steady-state temperature distribution.

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 3.0.2 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.2.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Turn off the Geometry Engine.

Tools/Advanced Geometry	Standard
-------------------------	----------

3. Create the materials of the model.

First, create a material called **pcb**.

Model/Material...

Title:

pcb	
.066	

Conductivity, k:

OK

Next, create a material called **chip**.

Model/Material...

Title:

Conductivity, k:

chip	
2.24	

OK	
Cancel	

4. Create the element properties for the model.

First, create a property for the printed circuit board called **pcb**.

Model/Property...

Title:

рсь

Material:	1pcb
Elem/Property Type	
Volume Elements:	● Solid
ОК	
ОК	

Next, create an element property for the chips called **chip**.

Title:

OK

Material:

chip	
2chip	

OK	
Cancel	

5. Create the NASTRAN geometry for the model.

First, create surfaces to represent the board and the chips.

Geometry/Surface/Corners...

Create the board surface:

<i>X</i> :	<i>Y</i> :	<i>Z</i> :
0	0	0
9	0	0
9	6	0
0	6	0

ОК
ОК
OK
OK

Create the first chip surface:

¢.		
	OK	

6-5

<i>X</i> :	<i>Y</i> :	<i>Z</i> :	
2	1	0	ОК
2	2.5	0	ОК
1	2.5	0	ОК
And the sec	cond chip surfa	ce:	
<i>X</i> :	<i>Y</i> :	<i>Z</i> :	
4	4	0	OK
5	4	0	OK
5	5	0	OK
4	5	0	ОК
And the thi	rd chip surface	:	
<i>X</i> :	<i>Y</i> :	<i>Z</i> :	
5.5	2	0	OK
6.5	2	0	OK
6.5	3	0	OK
5.5	3	0	ОК

Cancel

To fit the display onto the screen, use the Autoscale feature.

View/Autoscale...

<CTRL A>

Next, extrude the surfaces into solids.

Geometry/Volume/Extrude...

Select the largest surface, representing the board.

OK

	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Base:	0	0	0
Tip:	0	0	1

OK

Select the three small surfaces, representing the chips.

<i>K:</i>	Y: Z:
0	0 0
0	0.25
	C: D D

OK	
Cancel	

Your model should be like the following figure:

6. Set the default size for the mesh.

Mesh/Mesh Control/Default Size

0.25	

OK

```
7. Create the mesh for the model.
```

First, turn off all labels to keep the screen from getting "messy".

View/Options...

Quick Options...

6-8 MSC/NASTRAN for Windows 104 Exercise Workbook

LESSON 6

Labels Off	
Done	
Apply	
OK	

Next, create the mesh for the pcb (the circuit board).

Mesh/Geometry/Volume...

Select the largest solid (the board).

OK

Property:

1..pcb

OK

Finally create the mesh for the chips.

Mesh/Geometry/Volume...

Select the three smaller solids (the chips).

OK

Property:

2..chip

OK

Finally, remove coincident nodes of the model.

Tools/Check/Coincident Nodes...

Select All	
OK	

When asked, "OK to Specify Additional Range of Nodes to Merge?" respond with **No**.

No

Your model should be like the following figure:

Figure 6.2: The meshed model

8. Create the thermal loading for the model.

First, a load set must first be created before creating the appropriate model loading.

Model/Load/Set...

Title:

thermal

OK

Next, apply a uniform default temperature to the model.

Model/Load/Body... (next to Thermal options) Active Default Temperature: 20 OK Image: Contemporate and the second seco

Change the view to make applying the loads easier.

View/Rotate...

<F8>

YZ Right
OK

Your model should be like the following figure:

Figure 6.3: The model set with default temperature.

Apply a heat flux to the chips in the model.

Model/Load/Elemental...

Hold shift and drag a box around the left edges of all chip elements.

ОК	
Type:	● Heat Flux
Value:	5
ОК	
Face:	2
OK	

Apply free convection to the back of the board in the model.

Hold shift and drag a box around the right edges of all board elements.

Your loaded model should be like the following figure:

Figure 6.4: The loaded model.

9. Create the input file and run the analysis.

File/Analyze...

Analysis Type:

20..Steady-State Heat Transfer

When asked if you wish to save the model, respond Yes.

Yes

File Name:

pcb

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\pcb.xdb", respond **Yes**.

Yes

10. Change the display to better view the results.

First, change the viewing angle.

View/Rotate...

```
<F8>
```

Isometric	
OK	

Next, remove all geometry and thermal loading markers from the screen

View/Options...

<F6>

Quick Options	
Geometry Off	
	Load - Heat Flux
	Load - Convection
Done	
ОК	
11. Create a final ter	mperature distribution contour plot.
View/Select	<f5></f5>

Model Style:

• Quick Hidden Line

Contour Style:	• Contour
Deformed and Contour Data	
Deformation:	31Temperature
Contour:	31Temperature
ОК	
ОК	

In Figure 6.5, notice the temperature gradients around the chips, where all the heat is produced.

When done, exit MSC/NASTRAN for Windows.

File/Exit

This concludes this exercise.

Figure 6.5: Free convection analysis on a printed circuit board