LESSON 4

Directional Heat Loads

MSC/NASTRAN for Windows 104 Exercise Workbook-Release 3.0.2 4-1

4-2 MSC/NASTRAN for Windows 104 Exercise Workbook-Release 3.0.2

Model Description:

LESSON 4

Below is a model of a cylinder which radiates heat to space (ambient temperature 20 degrees C, view factor 1) in a direction consistent with the surface normal. It has a heat flux passing through it in the global negative x-direction of 30 W/in^2 . In this exercise you will determine the steady state temperature distribution of the model.

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 3.0.2 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.2.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Create the NASTRAN geometry for the plate.

Geometry/Surface/Cylinder...

First, define the center and the height.

	<i>X:</i>	<i>Y</i> :	<i>Z</i> :
Base:	0	0	0
Tip:	0	0	6

OK

Next, define the direction toward start of surface.

Base:	0	0	0
Tip:	1	0	0

OK
Bottom Outer:

OK

Cancel

0.75	

3. Use Autoscale and Rotate to better view the model.

View/Rotate...

Isometric OK (or use <**F8**>)

4-4	MSC/NASTRAN for Window	vs 104 Exercise	Workbook-Release 3.0.2
-----	------------------------	-----------------	------------------------

4. Create a material called **alum**. In anticipation of a future structural analysis, we will take this opportunity to simulataneously describe the material properties of the structure.

From the pulldown menu, select Model/Material.

Model/Material...

Title:

Youngs Modulus, E:

Poisson's Ratio, nu:

Expansion Coeff, a:

Conductivity, k:

alum	
1.0e7	
0.34	
1.3e-5	
3.96	

OK	
Cancel	

5. Create a property called **tube** to apply to the members of the cylinder itself.

From the pulldown menu, select Model/Property.

Model/Property...

Title:

tube

To select the material, click on the list icon next to the databox and select **alum**.

Material:

Thickness, Tavg or T1:

OK	
Cancel	

1alum	
0.0625	

6. Define the mesh size on the tube.

Mesh/Mesh Control/Mapped Divisions on Surface

Select Surface 1. To do this, you can either click on the yellow surface and hitting "OK" or enter it manually as shown below.

1

The Messages and Lists window should confirm with "1 Surface(s) Selected".

Now input the mesh size on surface.

ID:

OK

	<i>s</i> :	<i>t</i> :
Number of Elements:	20	24
Bias:	1.	1.
ОК		
Cancel		

Repeat the foregoing steps to prescribe an equivalent mesh density for *Surface* 2. Note, however, that the parameterizaton of *Surface* 2 is opposite to that of *Surface* 1 (i.e. the number of nodes along the *s* and *t* directions will need to be reversed)

Q>)

7. Now, create the mesh for the model.

Mesh/Geometry/Surface

8. Remove the labels from the screen.

View/Options...

Quick Options	(or use <ctrl< th=""></ctrl<>
Labels Off	

Compare the topology of your finite element model to Figure 4-1.

Figure 4-1: Meshed Model

9. Now check and merge all coincident nodes.

Tools/Check/Coincident Nodes...

Select All	
OK	

When asked if it is OK to specify additional range of nodes to merge, respond $\mathbf{No.}$

No

Options:

OK

10. Create a uniform temperature loading for the model.

First, a load set must first be created before creating the appropriate model loading.

Model/Load/Set...

Title:

load1	

OK

Next, apply a uniform default temperature to the model.

Model/Load/Body...

(next to Thermal options)

Default Temperature:

Active500

OK

11. Set up heat transfer properties by the following procedure:

Model/Load/Heat Transfer

Temp Offset from Abs Zero:

273.15	
3.658e-11	

(or use <**F6**>)

Show Direction

1..Normal Vectors

Element - Directions

 \mathbb{N}

Stefan-Boltzmann:

- OK
- 12. Verify the direction of the element normal vectors of the shell elements.

View/Options...

Options:

Normal Style:

Turn the model to a better view to verify the vectors.

View/Rotate...

(or use <**F8**>)

ХҮ Тор	
ОК	

If the normal vectors are all pointing at the outward direction, return to the previous view point and turn off the vectors.

View/Rotate...

View/Options...

Show Direction

OK

13. Apply the loading conditions to the surface of the model.

First, create the heat flux.

Model/Load/Elemental...

MSC/NASTRAN for Windows 104 Exercise Workbook-Release 3.0.2 4-9

Next, apply radiation to space at ambient temperature of 20 degrees C.

Select All	
ОК	
Type:	Radiation
Emissivity:	0.8
Absorptivity:	0.8
Temperature:	20
View Factor:	1
ОК	
Face:	1
ОК	

14. Create the input file and run the analysis.

File/Analyze

Cancel

Analysis Type:

20..Steady-State Heat Transfer

Run Analysis

When asked if you wish to save the model, respond Yes.

Yes	

File Name:

tube

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

15. Remove the thermal loading markers from the screen.

View/Options...

Quick Options	
	Load - Heat Flux
	Load - Radiation
Done	
ОК	

16. Create a final temperature distribution contour plot.

View/Select...

Model Style:	● Hidden Line
Contour Style:	• Contour
Deformed and Contour Data	
Output Set:	1Case 1 Time 1
Contour:	31Temperature
ОК	
ОК	

4-12 MSC/NASTRAN for Windows 104 Exercise Workbook-Release 3.0.2

Notice the effects of the direction of the heat flux and radiation on the temperature distribution in Figure 4-2.

When done, exit MSC/NASTRAN for Windows.

File/Exit

This concludes this exercise.