WORKSHOP PROBLEM 5

Large-Scale Deformation of a Hyperelastic Material

Objectives:

- Create a model with hyperelastic material properties.
- Submit an MSC/NASTRAN nonlinear analysis.
- Generate an accurate deformation plot of the model.

5-2 MSC/NASTRAN for Windows 103 Exercise Workbook

Model Description:

Below is a finite element representation of a hyperelastic material under load. A nonlinear analysis with load increments will be performed to obtain the deformation of this material under load.

Figure 5.1

Table	5.1	-	Hy	/1	perelastic	Pro	perties
			_				

Distortional Deformation Constants, A ₁₀ :	0
Distortional Deformation Constants, A ₀₁ :	1500
Distortional Strain Energy, N _A :	3
Volumetric Strain Energy, N _D :	1

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

(Optional) For users who wish to remove the default rulers in the work plane model, please do the following:

View/Options...

Category:

• Tools and View Style
Workplane and Rulers
Draw Entity

Apply	
Cancel	

2. Create functions to define the hyperelastic material properties.

From the pulldown menu, select Model/Function.

Model/Function...

Title:

Type:

Simple_Tension
4vs Stress

Load the data from the functions library.

Load...

Library Entry:

Treloar[1944]SimpleTen

Delete		
Delete		
Data Entry:		● Single Value
<i>X</i> :	<i>Y</i> :	
1	0	More
1.125	1	ОК

Remove the first two entries of the function and replace with the new data point.

Create the second function.

ID:

Title:

Type:

2
Equibiaxial_Tension
4vs Stress

Load the data from the functions library.

Load...

Library Entry:

Treloar[1944]Equibiaxial

OK OK

Create the third function.

ID:

Title:

Type:

 3

 Pure_Shear

 4..vs Stress

Load the data from the functions library.

Load...

Library Entry:

Treloar[1944]PureShear

OK	
OK	

Cancel

3. Create a material called **mat_1**.

From the pulldown menu, select Model/Material.

Model/Material...

Title:	mat_1
Туре	
	• Hyperelastic
ОК	

Distortional Deformation Constant (A_{ij}) ; i=row, j=column:

A ₁₀ :	0
<i>A</i> ₀₁ :	1500

Strain Energy Polynomial Order:

Distortional:	3
Volumetric:	1

To select the function from the functions created in the previous step, select the desired field and depress **Ctrl-F**.

Experimental Data Functions:

Simple Ten/Comp:

Entity ID:

OK

Equibiaxial Tension:

Entity ID:

OK

Pure Shear:

Entity ID:

Ctrl-F
1..Treloar [1944] Simple Ten

Ctrl-F

2..Treloar[1944] Equibiaxial

Ctrl-F

3..Treloar [1944] Pure Shear

MSC/NASTRAN for Windows 103 Exercise Workbook

OK
ОК
Cancel

4. Create the property that will define the hyperelastic element.

Model/Property...

Elem/Property Type	
Volume Elements:	• Solid
ОК	
Title:	Solid
To select the material c	lick on the list icon next to the dat

To select the material, click on the list icon next to the databox and select **mat_1**.

Material:

1..mat_1

OK
Cancel

5. Create the nodes for the structure.

Model/Node...

OK

Repeat the process for the other 7 nodes.

N	ode 6.			
X:	<i>Y</i> :	<i>Z</i> :		
1	0	-1	Parameters	
	TX 🛛 TY [TZ		
\boxtimes	RX 🛛 RY	RZ RZ	ОК	ОК
N	ode 7.			
<i>X:</i>	<i>Y</i> :	<i>Z</i> :		
1	1	-1	Parameters	
	TX 🗌 TY [TZ		
\boxtimes	RX 🛛 RY	RZ RZ	ОК	ОК
N	ode 8.			
<i>X:</i>	<i>Y</i> :	<i>Z</i> :		
0	1	-1	Parameters	
\boxtimes	TX 🗌 TY [TZ		
\boxtimes	RX 🛛 RY	RZ RZ	ОК	ОК

Cancel

To bring the model into the viewable area, use the Autoscale feature and the Rotate feature.

View/Autoscale...

View/Rotate...

Trimetric

OK	
----	--

6. Create the element of the structure.

Model/Element...

Туре...

5-10 MSC/NASTRAN for Windows 103 Exercise Workbook

Volume Elements:	● Solid	
ОК		
Property:	1Solid	
Nodes:	1 2 3	4
	5 6 7	8
	• Brick	
ОК		

NOTE: When selecting the nodes, you may (if you wish) manually type in the endpoint nodes of the solid elements. However, it is easier to use the graphic interface and select the nodes on the screen using the mouse. Click in the first *Nodes* box and then select the nodes on the screen in the following order. (Note that the node nearest to the cursor is highlighted by a large yellow X - you don't have to click precisely on the node!)

Click **OK** when MSC/NASTRAN returns the message "Element or Region Top Face Below Bottom Face. Switching."

OK	
Cancel	

WORKSHOP 5

7. Create the model constraints.

Before creating the appropriate constraints, a constraint set must be created. Do so by performing the following:

Model/Constraint/Set...

Title:

constraint_1

OK

Now define the relevant constraint for the model.

Model/Constraint/Nodal...

Select Node 7.

OK

In the *DOF* box, check the following boxes:

\boxtimes	ТХ	TY	TZ
	RX	RY	RZ

OK	
Cancel	

Now create the second load set that defines the connectivity between **Node 7** and the remaining nodes.

Model/Constraint/Set...

Constraint Set ID:	2
Title:	constraint_2
ОК	

Now define the relevant constraint for the model.

Model/Constraint/Equation...

Enter the following under the *Constraint Equation* form.

5-12 MSC/NASTRAN for Windows 103 Exercise Workbook

OK

Create the remaining 8 constraint equation.

ID	2
Coeff	1
Node ID	3
DOF	
Add	
Coeff	-1
Node ID	7
DOF	
Add	
ОК	
ID	3
Coeff	1
Node ID	6
DOF	
Add	
Coeff	-1
Node ID	7
DOF	
Add	
ОК	
ID	4
Coeff	1
Node ID	3

ТΧ

-1	
7	

ΤХ

3	
1	
6	
🕅 ТХ	

-1	
7	

4	
1	
3	

DOF	TY
Add	_
Coeff	-1
Node ID	7
DOF	TY
Add	
ОК	
ID a. m	5
Coeff	1
Node ID	
DOF	X TY
Add	
Coeff	1
Node ID	7
DOF	X TY
Add	
ОК	
ID	6
Coeff	1
Node ID	8
DOF	TY TY
Add	
Coeff	-1
Node ID	7
DOF	TY TY
Add	
OK	

5-14 MSC/NASTRAN for Windows 103 Exercise Workbook

ID

Coeff Node ID

DOF

Add

Coeff

Node ID

DOF

ID

Coeff

DOF

Add

Coeff

DOF

Node ID

L

Node ID

Add	
OK	

7		
1		
5		
\boxtimes	TZ	

8	
1	
6	
\boxtimes	TZ

-1	
7	
X TZ	

Add	
ОК	
ID	9
Coeff	1
Node ID	8
DOF	
Add	
Coeff	-1

MSC/NASTRAN for Windows 103 Exercise Workbook 5-15

Node I	D
--------	---

DOF

7	
TZ	

Add	
OK	
Cancel	

8. Create the model loading.

Like the constraints, a load set must first be generated before creating the appropriate model loading.

Model/Load/Set...

Title:

load_1

OK

Since this is a nonlinear analysis, the nonlinear analysis load set options must first be defined.

Model/Load/Nonlinear Analysis...

Solution Type:

• Static

1..AUTO

1..YES

48

1

Defaults...

Number of Increments:

Stiffness Updates / Method:

Iterations Before Update:

Output Control / Intermediate:

OK

Next, create the displacement load.

Model/Load/Nodal...

Select Node 7.

OK

Highlight **Displacement**.

File/Export/Analysis Model...

Analysis Type:

OK

10..Nonlinear Static

Change the directory to C:\temp.

File name:	prob5
Write	
	🔀 Run Analysis
Advanced	
Problem ID:	Large Deformation of Hyperelastic Material
ОК	

Under *Output Requests*, change the output to:

1..PostProcess Only

Also deselect all the boxes except the following:

Displacement

Under Analysis Case Requests, enter the following:

\boxtimes	Loads =
\boxtimes	Constraints (SPC) =

1load_1	
1constraint_1	

\boxtimes	Constrain	t Eqns (MPC) =	
OK			
OK			

When asked if you wish to save the model, respond Yes.

Yes	

File name:

prob5

2..constraint_2

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob5.xdb," respond **Yes**.

Yes

10. List the results of the analysis.

To list the results, select the following

List/Output/Query...

Output Set:	48Case 48 Step 1.000000
Category:	1Displacement
Entity:	• Node
ID:	2
OK	

NOTE: You may want to expand the message box in order to view the results. To do this, double click on the message box. Adjust the size of the box to your preference by dragging the top border downward.

Answer the following questions using similar procedure. The answers are listed at the end of the exercise.

What is the T1 displacement of Node 2 at load step = 1.0?

T1 Translation @ Node 2 = _____

What is the T1 displacement of **Node 5** at load step = 1.0?

T1 Translation @ Node 5 = _____

11. Display the deformed plot on the screen.

First, you may want to remove the labels and LBC markers in order to give a better view of the deformation.

View/Options...

Plot the deformation of the structure.

View/Select...

OK

Deformed Style:	● Deform
Deformed and Contour Data	
Data Selection/Category:	1Displacement
Output Set:	48Case 48 Step 1.000000
Output Vectors/Deformation:	1Total Translation
ОК	

The XY view should appear as follows:

In order to see the deformation results accurately, you will need to turn off the display scaling of the actual deformation.

View/Options...

NOTE: You may need to decrease the magnification of the model in order to see deformation of the model.

View/Magnify...

Notice how drastically the shape of the hyperelastic element changed. The height and the width of the element shrinked to less than half of their original dimensions in order to compensate for the deformation in the x direction.

This concludes the exercise.

00000.0	:5 əpoN ⊚ X qsiU
00000.9	:2 ∍poN @ X qsiU