
WORKSHOP PROBLEM 4c

Nonlinear Snap-Through Load Analysis (different spring constants)

Objectives:

- Create and prepare the appropriate model for the analysis.
- Demonstrate the use of a nonlinear static analysis for a snap-through load.
- Observe the effect of different spring constants on the load-deflection curve.

4c-2 MSC/NASTRAN for Windows 103 Exercise Workbook

Model Description:

Below is Figure 4c.1 a finite element representation of a structure composed of a cantilever beam and a spring. A load will be applied at the junction of the beam and the spring. In this exercise, multiple nonlinear analyses will be performed on the model with different spring constants.

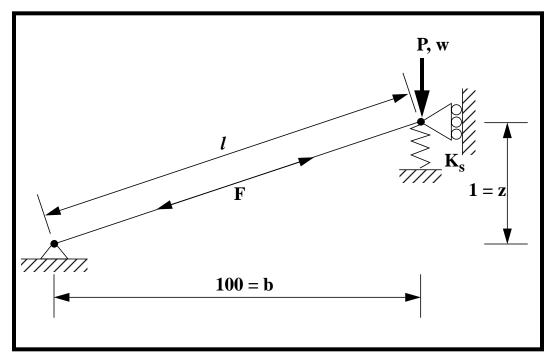


Table 4c.1 - Properties

Elastic Modulus:	10.E7 psi
Bar Cross Sectional Area:	0.1 in ²
Load, P:	15 lbs.
Spring Constant, K _s :	0, 3, 6 lbs./in

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

(Optional) For users who wish to remove the default rulers in the work plane model, please do the following:

View/Options...

• Tools and View Style
Workplane and Rulers
Draw Entity

Apply	
Cancel	

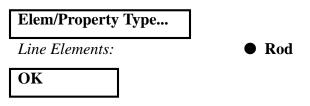
Category:

2. Create a material called **mat_1**.

From the pulldown menu, select Model/Material.

Model/Material...

Title:


mat_1	
10.E7	

Youngs Modulus:

OK Cancel

3. Create the property that will define the beam element and the spring element.

Model/Property...

Title:

WORKSHOP 4c

To select the material, click on the list icon next to the databox and select mat 1.

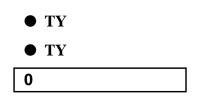
Material:

1..mat_1 0.1

Area:

OK

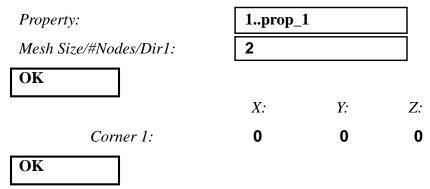
Create the grounded spring property.


Elem/Property Type	
Line Elements:	 DOF Spring
ОК	
Title:	prop_2

Tie the element's y translational freedom to the DOF of its end nodes.

End A:

End B:


Stiffness:

OK Cancel

4. Create the NASTRAN finite element model.

Mesh/Between...

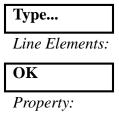
MSC/NASTRAN for Windows 103 Exercise Workbook 4c-5

	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Corner 2:	100	1	0

OK

To bring the model into the viewable area, use the Autoscale feature.

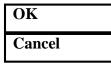
View/Autoscale


Now create the ground node for the 0-D spring element.

Model/Node...

	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Coordinates:	100	1	0
Parameters <i>Permanent Constraints:</i>	X TX [RX]		
ОК			

Create the grounded spring element.


Model/Element...

Nodes:

OK

Cancel

lacksquare	DOF	Spring	2
-	DOL	oping	

2prop_2			
2		3	

5. Create the model constraints.

Before creating the appropriate constraints, a constraint set must be created. Do so by performing the following:

Model/Constraint/Set...

Title:

constraint_1

Now define the relevant constraint for the model.

Model/Constraint/Nodal...

Select Node 1.

OK	

Fixed

OK

Next, select Node 2.

OK							
	1	\boxtimes	ТХ		TY	\square	TZ
		\boxtimes	RX	\square	RY	\boxtimes	RZ
OK							
Cancel							

6. Create the model loading.

Like the constraints, a load set must first be generated before creating the appropriate model loading.

Model/Load/Set...

Title:

load_1

OK

MSC/NASTRAN for Windows 103 Exercise Workbook 4c-7

Since this is a nonlinear analysis, the nonlinear analysis load set options must first be defined.

• Static

Model/Load/Nonlinear Analysis...

Defaults	
Number of Increments:	10
Stiffness Updates/Method:	1AUTO
Output Control/Intermediate:	1YES

Next, define the parameters for the arc-length methods (NPLCI).

Advanced...

Solution Type:

Under Arc-Length Solution Strategy, enter the following:

Constraint Type:

Min ArcLen Adjust Ratio:

Max ArcLen Adjust Ratio:

lax	Increments:

1Crisfield	
1.0	
1.0	
25	

М

OK	
OK	

Now create the load.

Model/Load/Nodal...

Select Node 2.

OK

Highlight Force.

FY	
OK	
Cancel	

-15

4c-8 MSC/NASTRAN for Windows 103 Exercise Workbook

7. Submit the job for analysis.

File/Export/Analysis Model...

Analysis Type:

10..Nonlinear Static

OK

Change the directory to **C:\temp**.

File name:
prob4c_1

Write
Image: Run Analysis

Advanced...
Image: Run Analysis

Problem ID:
Nonlinear Snap-Through Analysis w/ Spring

OK
Image: Run Analysis w/ Spring

Under Output Requests, change the output to:

1..PostProcess Only

Also deselect all the boxes except the following:

OK	
OK	

When asked if you wish to save the model, respond Yes.

Yes	
105	

File name:

prob4c

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob4c_1.xdb," respond **Yes**.

8. List the results of the analysis.

To list the results, select the following:

List/Output/Query...

Output Set:

Category:

Entity:

ID:

OK

NOTE: You may want to expand the message box in order to view the results. To do this, double click on the message box. Adjust the size of the box to your preference by dragging the top border downward.

2

Answer the following questions using the results. The answers are listed at the end of the exercise.

What is the T2 displacement **Node 2**?

T2 displacement @ Node 2 = _____

10..Case 10 Step 1.000000

1..Displacement

• Node

9. Modify the spring constant and resubmit the analysis. A sample of the algorithm for the next two analyses are as follows:

Change the spring constant to k=#.

Modify/Edit/Property...

Nonlinear Snap-Through Load Analysis

ID:	2
ОК	
Stiffness:	# (3 or 6)
ОК	
Resubmit the job for analysis.	

File/Export/Analysis Model...

Analysis Type:

10..Nonlinear Static

OK

Change the directory to C:\temp.

File name:

prob4c_# (2 or 3)

Write

Advanced...

Problem ID:

Run Analysis
Nonlinear Snap-Through

Analysis w/ Spring

OK

Under *Output Requests*, change the output to:

1..PostProcess Only

Also deselect all the boxes except the following:

\mathbf{X}	Displacement
\mathbf{X}	Applied Load

OK	
OK	

When asked if you wish to save the model, respond Yes.

Yes

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob4c_#.xdb," respond **Yes** (where # is 2 or 3).

Yes

To list the results, select the following:

List/Output/Query...

Output Set:	#0Case 10 Step 1.000000 (# = 2 or 3)
Category:	1Displacement
Entity:	● Node
ID:	2
ОК	

NOTE: You may want to expand the message box in order to view the results. To do this, double click on the message box. Adjust the size of the box to your preference by dragging the top border downward.

Answer the following questions using the results. The answers are listed at the end of the exercise.

What is the T2 displacement **Node 2**?

For k=3, T2 displacement @ Node 2 = _____ For k=6, T2 displacement @ Node 2 = _____

10. Create an XY plot of Displacement versus Load Step Value.

First, plot the k=0 case.

View/Select...

XY Style:

XY Data...

Data Selection/Category:

Output Set:

Output Vectors:

Output Location/Node:

Show Output Sets:

From:

To:

1	
10	

OK	
OK	

Now, plot the k=3 case.

View/Select...

XY Style:

XY Data...

Data Selection/Category:

Output Set:

Output Vectors:

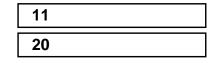
Output Location/Node:

Show Output Sets:

From:

To:

OK


• XY vs Set Value

1..Displacement

20..Case 10 Step 1.000000

3..T2 Translation

2

• XY vs Set Value

1..Displacement

10..Case 10 Step 1.000000

3..T2 Translation

2

OK

Finally, plot the k=6 case.

View/Select...

XY Style:

XY Data...

Data Selection/Category:

Output Set:

Output Vectors:

Output Location/Node:

Show Output Sets:

From:

To:

1Displacement
30Case 10 Step 1.000000
3T2 Translation
2
21
30

• XY vs Set Value

OK OK

Notice that as k increases, the load required to produce "snap-through" also increases. "Snap-through" occurs when the displacement is greater that the maximum allowable value (y = -1.0).

This concludes the exercise.

-2.16169	Disp Y @ Node 2, k = 6:
-2.43834	S = 3, $k = 3$, $k = 3$: $Q = 3$
28179.2-	Disp Y @ Node 2, $k = 0$: