
WORKSHOP PROBLEM 2a

Geometric Linear Analysis of a Cantilever Beam

Objectives:

- Demonstrate the use of geometric linear analysis.
- Observe the behavior of the cantilever beam under four increasing load magnitudes.
- Generate a Displacement versus Subcase plot from the result.

Model Description:

Below in Figure 2a.1 is a finite element representation of a cantilever beam. An incremental load will be applied at the tip of the beam. Through a linear analysis of the beam, the displacement at the tip will be determined under different loading conditions.

Figure 2a.1

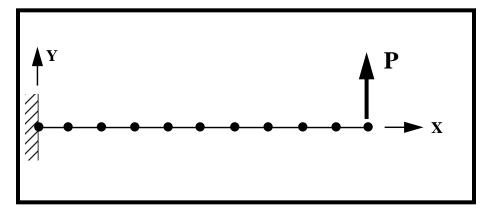


Table 2a. 1 - Properties

Elastic Modulus:	1.0E7 psi
Poisson's Ratio:	0.3
Length:	10.0 in
Bar Cross Sectional Area:	1.0 in ²
Moments of Inertia, I ₁₁ :	1.0E-2 in ⁴
Moments of Inertia, I ₂₂ :	1.0E-2 in ⁴

Table 2a.2 - Load Cases

Subcase	Load (P)
1	2000 lbs
2	4000 lbs
3	6000 lbs
4	8000 lbs

Exercise Procedure:

Start up MSC/NASTRAN for Windows V3.0 and begin to 1. create a new model. Double click on the icon labeled MSC/NASTRAN for Windows V3.0. On the *Open Model File* form, select **New Model**. **New Model** Open Model File: (Optional) For users who wish to remove the default rulers in the work plane model, please do the following: View/Options... ● Tools and View Style Category: **Workplane and Rulers Draw Entity** Apply Cancel 2. Create a material called **mat_1**. From the pulldown menu, select **Model/Material**. Model/Material... Title: mat_1 Youngs Modulus: 1.0E7 0.3 Poisson's Ratio: **OK** Cancel 3. Create the property that will define the beam element. Model/Property... Elem/Property Type... Line Elements: Beam **OK**

Title:	prop_1

To select the material, click on the list icon next to the databox and select $mat \ 1$.

 Material:
 1.mat_1

 Area:
 1.0

 I_1 :
 1.0E-2

 I_2 :
 1.0E-2

OK Cancel

4. Create the NASTRAN finite element model.

Mesh/Between...

Property: 1..prop_1

Mesh Size/#Nodes/Dir1: 11

OK

X: Y: Z:
Corner 1: 0 0 0

OK

X: Y: Z:
Corner 2: 10 0 0

OK

Now specify the orientation vector for the beam elements.

X: Y: Z:

Base: 0 0 0

Tip: 0 0 1

To bring the model into t	To bring the model into the viewable error use the Autoscale feeture		
To bring the model into the viewable area, use the Autoscale feature.			
View/Autoscale			
5. Create the model c	onstraints.		
Before creating the appropriate created by performing the	copriate constraints, a constraint set must be the following:		
Model/Constraint/Set			
Title:	constraint_1		
OK			
Now define the relevant of	constraint for the model.		
Model/Constraint/Noda	1		
Select Node 1.			
OK			
	Fixed		
OK			
	ining nodes to planar translation and rotation. 11. (Hint: Use the Shift key and the left gular picking.)		
OK			
	\square TX \square TY \boxtimes TZ		
	\boxtimes RX \boxtimes RY \square RZ		
OK			
Cancel			

OK

6. Create the load set.

Wiodei/Load/Set	
Title:	load_1
OV	

OK

7. Now, define the relevant loading conditions.

Model/Load/Nodal...

Select Node 11.

OK

Highlight Force.

8. Repeat **Steps 6 & 7** to create the remaining load cases. Use

the following table to make the appropriate changes to the steps:

Load Set ID	2	3	4
Load Set Title	load_2	load_3	load_4
FY @ Node 11	4000	6000	8000

NOTE: Be certain to change the ID each time when creating a new load set!

After creating all the load sets, redraw the viewport by selecting:

View/Redraw

9. Submit the job for analysis.

File/Export/Analysis Model...

Analysis Type:	1Static		
OK			
Change the directory to (C:\temp.		
File name:	prob2a		
Write			
	Run Analysis		
Advanced			
Problem ID:	Linear Analysis of a Cantilever Beam		
OK			
Under Output Requests	s, change the output to:		
	1PostProcess Only		
Also deselect all the boxe	es except the following:		
	Displacement		
Under <i>Analysis Case R</i>	Under Analysis Case Requests, enter the following:		
SUBCASE ID:	1		
\triangle Loads =	1load_1		
Write Case			
Click OK when you receive the confirmation that the subcase has been written.			
ОК			
Under Analysis Case Requests, enter the following:			
SUBCASE ID:	2		
\triangle Loads =	2load_2		
Write Case			

Click OK when you receive the confirmation that the subcase has been written.			
ОК			
Under Analysis Case Request	s, enter the following:		
SUBCASE ID:	3		
∑ Loads =	3load_3		
Write Case			
Click OK when you receive the cowritten.	onfirmation that the subcase has been		
OK			
Under Analysis Case Request	s, enter the following:		
SUBCASE ID:	4		
∑ Loads =	4load_4		
ОК			
Click OK when you receive the co	onfirmation that the subcase has been		

Click \mathbf{OK} when you receive the confirmation that the subcase has been written.

OK OK

When asked if you wish to save the model, respond Yes.

File name: prob2a

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the Message Review form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob2a.xdb," respond **Yes**.

Yes

10. List the results of the analysis.

To list the results, select the following:

List/Output/Standard...

Select All OK

To look at the displacement in the T2 direction of a node,

Sort Field:

3..T2 Translation

Options:

Details Only

Format ID:

0..NASTRAN Displacement

OK

Select Node 11.

OK

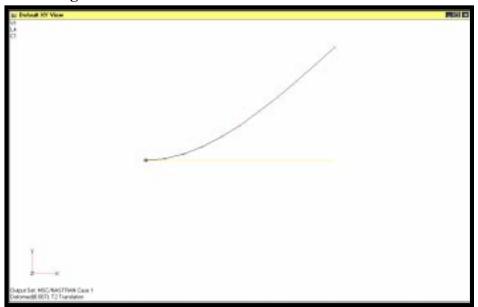
NOTE: You may want to expand the message box in order to view the results. To do this, double click on the message box. Adjust the size of the box to your preference by dragging the top border downward.

Answer the following questions using the results. The answers are listed at the end of the exercise.

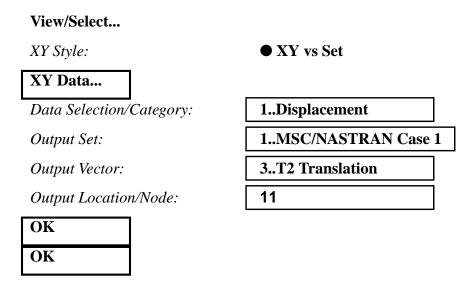
What is the T2 displacement Noc	de 11 for each subcase?
T2 disp @ Node 1	11, Subcase 1 =
T2 disp @ Node 11, Subcase 2 =	
-	11, Subcase 3 =
12 disp @ Node i	11, Subcase 4 =
11. Display the deformed plot	on the screen.
First, you may want to remove the labels and LBC markers in order to give a better view of the deformation.	
View/Options	
Quick Options	
	Labels Off
	Load - Force
	Constraint
Done	
ОК	
Plot the deformation of the beam	
View/Select	
Deformed Style:	● Deform
Deformed and Contour Data	
Data Selection/Category:	1Displacement
Output Set:	1MSC/NASTRAN Case 1
Output Vectors/Deformation:	3T2 Translation
OK	
ОК	

In order to see the deformation results accurately, you will need to turn off the display scaling of the actual deformation.

View/Options...

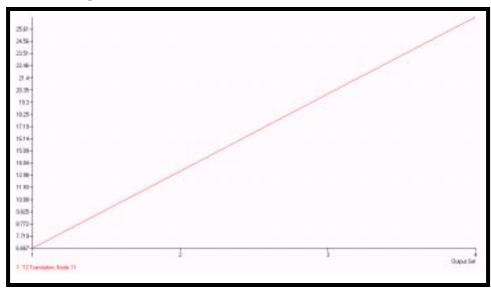

Category:	PostProcessing
Options:	Deformed Style
	% of Model (Actual)
OK	

NOTE: You may need to decrease the magnification of the model in order to see deformation of the model.


View/Magnify...

The XY view should appear as follows (with 0.6 magnification):

Figure 2a.2



12. Create an XY plot of Displacement versus Load Cases.

The XY View should appear as follows:

Figure 2a.3

Notice the linear relationship between the displacement and the load cases (linearly increasing loads).

This concludes the exercise.

Disp Y, Subcase 1:	6.66667
Disp Y, Subcase 2:	1.33333E1
Disp Y, Subcase 3:	2.00000E1
Disp Y, Subcase 4:	2.66667E1