WORKSHOP PROBLEM 1b

Spring Element with Nonlinear Analysis Parameters (large displacements on)

Objectives:

- Import the model from the previous exercise.
- Submit an MSC/NASTRAN nonlinear analysis with large displacements option enabled.
- Review and compare the results with those computed in the previous exercise.

1b-2 MSC/NASTRAN for Windows 103 Exercise Workbook

Model Description:

Below is a finite element representation of a rod connected to a grounded spring via a roller. The grounded spring will be modeled using a DOF spring element. A load is applied at the junction of these elements. A nonlinear analysis with the large displacements option enabled will be performed on the model.

Table 1b.1 - Properties

Elastic Modulus:	1.0E7 psi
Length:	10.0 in
Bar Cross Sectional Area:	0.01 in ²
Spring Constant (K):	1.0E3 lb/in

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

(Optional) For users who wish to remove the default rulers in the work plane model, please do the following:

View/Options...

• Tools and Vi	iew Style
Workplane and	d Rulers
Draw Entity	

Cancel	Apply	
	Cancel	

Category:

2. Import the model created in Workshop Problem 1a.

File/Import/Analysis Model...

OK

Change directory to C:\temp.

File name:

prob1a

Open

View/Redraw

3. Define the nonlinear analysis load set options.

Model/Load/Nonlinear Analysis...

Solution Type:

Defaults... Number of Incremen

r	of Increi	nents:
---	-----------	--------

4

Spring Element with Nonlinear Parameters

WORKSHOP 1b

Stiffness Updates/Method:	1AUTO
ОК	
4. Submit the job for analy	sis.
File/Export/Analysis Model	
Analysis Type:	10Nonlinear Static
ОК	
Change the directory to C:\ter	np.
File name:	prob1b
Write	
	🗙 Run Analysis
Advanced	
Problem ID:	Spring Element Problem with Large Disp. on
ОК	
Under <i>Output Requests</i> , cha	nge the output to:
	2Print and PostProcess
Also deselect all the boxes exc	cept the following:
	Displacement
	Element Force
Under Analysis Case Reque	ests, enter the following:
SUBCASE ID:	1
ОК	

MSC/NASTRAN for Windows 103 Exercise Workbook **1b-5**

Click **OK** when you receive the confirmation that the subcase has been written.

OK	
OK	

When asked if you wish to save the model, respond Yes.

File name:

prob1b

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob1b.xdb," respond **Yes**.

Yes

5. List the results of the analysis.

To list the results, select the following:

List/Output/Unformatted...

Select All	
ОК	

Deselect **All Vectors** and instead select **T1 Translation** from the pull down menu.

OK	

NOTE: You may want to expand the message box in order to view the results. To do this, double click on the message box. Adjust the size of the box to your preference by dragging the top border downward.

Answer the following questions using the results. The answers are listed at the end of the exercise.

What is the T1 displacement at the guided end, **Node 1**?

T1 Translation @ Node 1 = _____

You can make another list to find the answer to the second question.

List/Output/Unformatted...

Select All	
OK	

Deselect **All Vectors** and instead select **Spring Axial Force** from the pull down menu.

All Vectors

3028..Spring Axial Force

OK

What is the force in the spring element?

Spring Axial Force = _____

Answer the remaining questions using similar procedure.

What is the force in the rod element?

Rod Axial Force = _____

6. Display the deformed plot on the screen.

First, you may want to remove the labels and LBC markers in order to give a better view of the deformation.

View/Options...

Quick Options...

	Labels Off
	Load - Force
	Constraint
	Node - Perm Constraint
Done	
ОК	
Plot the deformation of the be	eam.
View/Select	
Deformed Style:	Deform
Contour Style:	• Contour
Deformed and Contour Data	l
Data Selection/Category:	1Displacement
Output Vectors/Deformation:	2T1 Translation
Output Vectors/Contour:	2T1 Translation

OK	
OK	

In order to see the deformation results accurately, you will need to turn off the display scaling of the actual deformation.

View/Options...

Category:

Options:

• PostProcessing
Deformed Style
% of Model (Actual)

OK

NOTE: You may need to decrease the magnification of the model in order to see deformation of the model.

View/Magnify...

WORKSHOP 1b

Notice the deflection computed in this exercise is much more reasonable than the result of the last exercise. The geometric nonlinearity of the problem has been better accounted for using the Large Displacements option.

This concludes the exercise.

1b-10 MSC/NASTRAN for Windows 103 Exercise Workbook

Disp X:	8.54019
Spring Axial Force:	8540.19
Rod Axial Force:	31504.7

WORKSHOP PROBLEM 1b

Spring Element with Nonlinear Analysis Parameters (large displacements on)

Objectives:

- Import the model from the previous exercise.
- Submit an MSC/NASTRAN nonlinear analysis with large displacements option enabled.
- Review and compare the results with those computed in the previous exercise.

1b-2 MSC/NASTRAN for Windows 103 Exercise Workbook

Model Description:

Below is a finite element representation of a rod connected to a grounded spring via a roller. The grounded spring will be modeled using a DOF spring element. A load is applied at the junction of these elements. A nonlinear analysis with the large displacements option enabled will be performed on the model.

Table 1b.1 - Properties

Elastic Modulus:	1.0E7 psi
Length:	10.0 in
Bar Cross Sectional Area:	0.01 in ²
Spring Constant (K):	1.0E3 lb/in

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

(Optional) For users who wish to remove the default rulers in the work plane model, please do the following:

View/Options...

● Tools and V	ïew Style	
Workplane and Rulers		
Draw Entity		

Cancel	Apply	
	Cancel	

Category:

2. Import the model created in Workshop Problem 1a.

File/Import/Analysis Model...

OK

Change directory to **C:\temp**.

File name:

prob1a

Open

View/Redraw

3. Define the nonlinear analysis load set options.

Model/Load/Nonlinear Analysis...

Solution Type:

Defaults... Number of Incremen

r	of Increi	nents:
---	-----------	--------

4			
-			

Spring Element with Nonlinear Parameters

WORKSHOP 1b

Stiffness Updates/Method:	1AUTO
ОК	
4. Submit the job for analy	sis.
File/Export/Analysis Model	•
Analysis Type:	10Nonlinear Static
ОК	
Change the directory to C:\ter	mp.
File name:	prob1b
Write	
	Run Analysis
Advanced	
Problem ID:	Spring Element Problem with Large Disp. on
ОК	
Under Output Requests, cha	inge the output to:
	2Print and PostProcess
Also deselect all the boxes exc	cept the following:
	Displacement
	Element Force
Under Analysis Case Reque	ests, enter the following:
SUBCASE ID:	1
ОК	

Click **OK** when you receive the confirmation that the subcase has been written.

OK	
OK	

When asked if you wish to save the model, respond Yes.

File name:

prob1b

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob1b.xdb," respond **Yes**.

Yes

5. List the results of the analysis.

To list the results, select the following:

List/Output/Unformatted...

Select All	
OK	

Deselect **All Vectors** and instead select **T1 Translation** from the pull down menu.

OK		
UK		

NOTE: You may want to expand the message box in order to view the results. To do this, double click on the message box. Adjust the size of the box to your preference by dragging the top border downward.

Answer the following questions using the results. The answers are listed at the end of the exercise.

What is the T1 displacement at the guided end, **Node 1**?

T1 Translation @ Node 1 = _____

You can make another list to find the answer to the second question.

List/Output/Unformatted...

Select All	
OK	

Deselect **All Vectors** and instead select **Spring Axial Force** from the pull down menu.

All Vectors

3028..Spring Axial Force

OK

What is the force in the spring element?

Spring Axial Force = _____

Answer the remaining questions using similar procedure.

What is the force in the rod element?

Rod Axial Force = _____

6. Display the deformed plot on the screen.

First, you may want to remove the labels and LBC markers in order to give a better view of the deformation.

View/Options...

Quick Options...

	Labels Off
	Load - Force
	Constraint
	Node - Perm Constraint
Done	
ОК	
Plot the deformation of the be	eam.
View/Select	
Deformed Style:	Deform
Contour Style:	• Contour
Deformed and Contour Data	l
Data Selection/Category:	1Displacement
Output Vectors/Deformation:	2T1 Translation
Output Vectors/Contour:	2T1 Translation

OK	
OK	

In order to see the deformation results accurately, you will need to turn off the display scaling of the actual deformation.

View/Options...

Category:

Options:

• PostProcessing	
Deformed Style	
% of Model (Actual)	

OK

NOTE: You may need to decrease the magnification of the model in order to see deformation of the model.

View/Magnify...

WORKSHOP 1b

Notice the deflection computed in this exercise is much more reasonable than the result of the last exercise. The geometric nonlinearity of the problem has been better accounted for using the Large Displacements option.

This concludes the exercise.

1b-10 MSC/NASTRAN for Windows 103 Exercise Workbook

Disp X:	8.54019
Spring Axial Force:	8540.19
Rod Axial Force:	31504.7