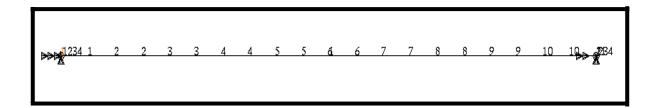

WORKSHOP PROBLEM 9b

Normal Modes with Differential Stiffness

Objectives

- Analyze a stiffened beam for normal modes.
- Produce NASTRAN input file that represent beam and load.
- Submit for analysis.
- Find normal modes (natural frequencies).

9b-2 MSC/NASTRAN for Windows 102 Exercise Workbook


Model Description:

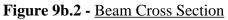

The goal of this example is to analyze a stiffened model. In this case, the beam from Problem 9a. with a 500 lb force applied.

Figure 9b.1 below is a finite element representation of the beam. This is no longer a simple normal modes analysis. Instead we will be using a nonlinear static solution.

Below is a finite element representation of the beam. One end is pinned in 3 translations and one rotation. The other is pinned in 2 translations and one rotation with a 500 lb force applied.

Figure 9b.1 - Grid Coordinates and Element Connectivities

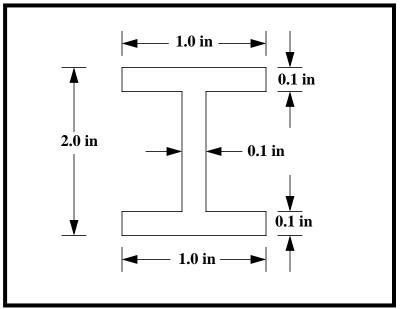


Table 9b.1 - Beam Dimensions

Length	100 in
Height	2 in
Width	1 in
Thickness	0.100 in
Area	0.38 in ²
I ₁	0.229 in ⁴
I ₂	0.017 in ⁴

Theoretical Solution

WORKSHOP 9b

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \left(1 + \frac{1}{Kr} \frac{Pl^2}{EI} \right) \right]^{1/2}$$

For Mode 1, Kn=9.87

$$f_n = \frac{9.87}{2\pi} \left[\frac{10 \times 10^6 (0.229)(386.4)}{(0.38)(0.101)(100)^4} x \left(1 + \frac{1}{9.87} \frac{(500)(100)^2}{(10 \times 10^6)(0.229)} \right) \right]^{1/2}$$

 $f_n = 26.36 Hz$

For Static Load

$$\Delta = \frac{PL}{AE}$$

$$\Delta = \frac{500(100)}{0.38(10 \times 10^6)}$$
$$\Delta = 0.0132$$

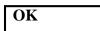
Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:


New Model

2. Import **prob1.DAT.**

File/Import/Analysis Model...

• Nastran

MSC/Nastran

Change the directory to **C** : \temp.

File name:

prob9a.DAT

Open

When ask, "Ok, to Adjust all massess by PARAM, WTMASS factor of 0.00259?", answer **No**. This information will be entered during analysis.

To reset the display of the model do the following.

View/Redraw

View/Autoscale

OK

3. Create the load set.

Create/Load/Set...

Title:

pull

OK

Normal Modes with Differential Stiffness WORKSHOP 9b

4. Define the options for a nonlinear analysis.

Model/Load/Nonlinear Analysis...

Solution Type: • Static Defaults... Basic/Number of Increments: 5 OK 5. Create the point loads. Model/Load/Nodal... Select Node 11. OK

(highlight)

FX	X

FX	X	
OK		
Cano	el	

Force	
500	

6. Submit the job for analysis.

File/Export/Anaylsis Model...

Analysis Type:

10..Nonlinear Static

OK

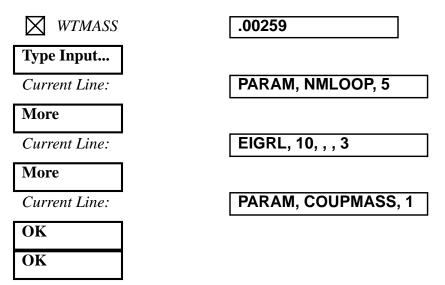
Change the directory to C:\temp.

File name:	prob9b
Write	
	🗙 Run Analysis
Advanced	
Problem ID:	Normal Modes w/

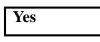
OK

Under *Output Requests*, unselect everything except:

Also, change output to:


2...Print and PostProcess

Type Input... *Current Line:*


METHOD = 10

OK	
OK	

Under PARAM, enter the following:

When asked if you wish to save the model, respond Yes.

File name:

Save

prob9b

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\prob9b.xdb", respond **Yes**.

Yes

7. Determine the results of the analysis.

In order to find the 3 eigenvalues go to **C:/temp** and view the **prob9b.f06** file. Search for the section of the file that resembles the one shown on the next page.

Under CYCLES, what are the three natural frequencies?

1st =____Hz

2nd = _____Hz

3rd = _____Hz

Are the answers consistent with the theoretical solutions?

г — 								ר — – ן
I								I
			R	EAL EIG	ENVAL	UES		
Ì	MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED	ļ
Ι	NO.	ORDER				MASS	STIFFNESS	I
	1	1	##	##	<u>##</u>	##	##	l
	2	2	##	##	<u>##</u>	##	##	
	3	3	##	##	<u>##</u>	##	##	I
Ι								I
								I
Ι								I

8. List the displacement results of the analysis.

To list the displacement results, select the following:

List/Output/Query...

Under the Output Set pull down menu, what are the first three modes?

Output Set: Category:

Entity:

ID:

1Displacement
● Node
11

#..Case 1 Step 1.000000

OK

What is the total displacement?

Displacement =	
----------------	--

The answer is listed at the end of the exercise.

When finished, exit MSC/NASTRAN for Windows.

File/Exit

This concludes this exercise.

9b-12 MSC/NASTRAN for Windows 102 Exercise Workbook

Mode 1	26.360 Hz
Mode 2	98.033 Hz
Mode 3	217.434 Hz
Displacement	0.013158