WORKSHOP PROBLEM 7

Direct Transient Response with Base Excitation

Objectives

- Create a geometric representation of a flat rectangular plate.
- Use the geometry model to define an analysis model comprised of plate elements.
- Define a time-varying unit acceleration.
- Use the large mass method model.
- Submit the file for analysis in MSC/NASTRAN.
- Compute nodal displacements for desired time domain.

7-2 MSC/NASTRAN for Windows 102 Exercise Workbook

Model Description:

Using the direct method, determine the transient response to a unit acceleration sine pulse of 250 Hz applied at the base in the z-direction. A large mass of 1000 lb is applied to the base. Use a structural damping coefficient of g = 0.06 and convert this damping to equivalent viscous damping at 250 Hz.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 7.1 - Loads and Boundary Conditions

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Import **prob1.DAT.**

File/ Import/Analysis Model...

• Nastran

MSC/Nastran

Change the directory to **C** : \temp.

File name:

prob1.DAT

Open

When ask, "Ok, to Adjust all massess by PARAM, WTMASS factor of 0.00259?", answer **No**. This information will be entered during analysis.

To reset the display of the model do the following:

View/Redraw

View/Autoscale

OK

3. Modify the model constraints.

Modify/Edit/Constraint...

Model Brand:

OK

Select the five nodes, **Nodes 1, 12, 23, 34, and 45** along the left edge. (Hint: Use shift and left mouse button for rectangular picking.)

OK

The following step will be repeated 4 more times for the other 4 nodes.

On the *DOF* box, select these translational and rotational D.O.F.

\boxtimes	ТХ	\boxtimes	TY	ΤZ
\boxtimes	RX	\square	RY	

OK

4. Redraw and rotate the model for a better view.

View/Redraw

View/Rotate...

Dimetric

OK

5. Create the point mass and the RBE mass.

Model/Property...

In the *Property Values* box, specify the mass.

Mass, M or Mx:

1	000	

OK	
Cancel	

To define the concentrated point mass and the RBE mass. First, assign and element to the concentrated mass.

Model/Element...

Under the Independent box, select the degrees of freedom.

Node:	23
DOF:	
	RX RY RZ

Under the *Dependent* box, select all the nodes along the free edge.

Nodes...

Select these four nodes, **Nodes 1, 12, 34, and 45** along the left edge. Be sure that Node 23 is NOT selected.

OK	
OK	
Cancel	

6. Create the time-dependent function for the transient response of the nodal loading.

Model/Function...

ID:

Title:

1	
time_depen_accelera	tion

To select the function, click on the list icon next to the databox and select **vs. Time.**

7. Create the loading conditions.

Before creating the appropriate loading a load set needs to be created. Do so by performing the following:

Model/Load/Set...

 Title:
 transient_response

 OK

Now, define the dynamic analysis parameters.

Model/Load/Dynamic Analysis...

Solution Method:

Under Equivalent Viscous Damping, input the following:

Overall Structural Damping Coeff (*G*):

0.06

• Direct Transient

Under Equivalent Viscous Damping Conversion, input the following:

Frequency for System Damping [W3-Hz]:

250			

Under Transient Time Step Interval, input the following:

Number of Steps:

Time per Step:

Output Interval:

Advanced...

Mass Formulation:

200	
2e-4	
1	

8. Now create the time varying nodal force under the same dynamic load set previously created.

Model/Load/Nodal...

Select Node 23.

To select the function dependence, click on the list icon next to the databox and select **time_depen_acceleration**.

Function Dependence:

2.588

The resulting model is shown below.

9. Create the input file for analysis.

File/Export/Analysis Model...

Type:

3..Transient Dynamic/ Time History

OK

Change the directory to C: \temp.

File name:

prob7

MSC/NASTRAN for Windows 102 Exercise Workbook 7-9

NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

11. List the results of the analysis.

To list the displacement results at Node 11, select the following:

List/Output/Query...

Output Set:	1MSC/NASTRAN Case 1
Category:	0Any Output
Entity:	● Node
ID:	23
OK	

Repeat this process for all relevant node locations and time steps. Answer the following questions using the results. The answers are listed at the end of the exercise.

Displacement

Nodal Displacement at Node 23

Time T3

- .02 = _____
- .04 = _____

Nodal Displacement at Node 33

T3

- .0 = _____
- .02 = _____
- .04 = _____

Velocity

Nodal Velocity at Node 23

Time T3

.0 = _____

.02 = _____

.04 = _____

Nodal Velocity at Node 33

Time T3

.0 = _____

.02 = _____

.04 = _____

Acceleration

Nodal Acceleration at gNode 23

Time T3

- .0 = _____
- .02 = _____
- .04 = _____

Nodal Acceleration at Node 33

Time T3

- .0 = _____
- .02 = _____
- .04 = _____

12. Finally, create the XY plot of the deformed data. First you may want to remove the labels and load and boundary constraint marker.

View/Options...

Quick Options	
Labels Off	
Deselect the following:	
	Load - Force
	Constraint
Done	
ОК	
Create the XY plot.	
View/Select	
XY Style:	• XY vs Set Value
XY Data	
Category:	0Any Output
Type:	0Value or Magnitude
Output Set:	1MSC/NASTRAN Case 1
Output Vector:	4T3 Translation
Output Location/	
Node:	23
ОК	
ОК	
To unpost the XY plot.	

View/Select...

Model Style:

OK

• Draw Model

Now repeat this process to generate the XY plots by altering the *Output Vector* to **T3 displacement, velocity,** or **acceleration** at Node 23 and 33.

The results are shown below.

0000000900

000000450

û.

П.

Figure 7.3 - Displacement at Node 23

Figure 7.4 - Displacement at Node 33

.0140

.0210

.0280

.0350

.0420

.00700

Figure 7.5 - Velocity at Node 23

Figure 7.7 - Acceleration at Node 23

When finished, exit MSC/NASTRAN for Windows.

File/Exit

This concludes this exercise.

Displacement

Time	Node 23	Node 33
0	0	0
0.02	2.523 E-6	4.588 E-6
0.04	2.523 E-6	7.213 E-7

Velocity

Time	Node 23	Node 33
0	1.030 E-5	-4.376 E-7
0.02	-1.358 E-7	1.230 E-3
0.04	-7.353 E-8	6.631 E-4

Acceleration

Time	Node 23	Node 33
0	0.1029	-4.376 E-3
0.02	1.624 E-4	-1.477
0.04	-1.365 E-4	1.242