

- Submit for analysis.
- Find normal modes (natural frequencies).

A-b-2 MSC/NASTRAN for Windows 102 Exercise Workbook

Model Description:

The goal of this example is to analyze a stiffened model. In this case, the beam from Appendix A. with a 1×10^7 N force applied.

Figure A-b.1 below is a finite element representation of the beam. One end is pinned in 3 translations and one rotation. The other is pinned in 2 translations and one rotation with a 1×10^7 N force applied.

Figure A-b.1

Grid Coordinates and Element Connectivities

Table A-b.1

Length	1.0 x 10 ³ mm
Elastic Modulus	2.0684 x 10 ⁵ MPa
Density	7.8334 x 10 ⁻⁹ N-sec ² /mm ⁴
Poisson's Ratio	0.32
Area	$5 \text{ x } 10^3 \text{ mm}^2$
I ₁	1.0417 x 10 ⁶ mm ⁴
Force	1 x 10 ⁷ N

Theoretical Solution

Appendix B

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \left(1 + \frac{1}{Kr} \frac{Pl^2}{EI} \right) \right]^{1/2}$$

$$fn = \frac{9.87}{2\pi} \left[\frac{(2.0684 \times 10^5)(1.0417 \times 10^6)}{(7.8334 \times 10^{-9})(5 \times 10^3)(1.0 \times 10^3)^4} x \left(1 + \frac{1}{9.87} \frac{(1 \times 10^7)(1 \times 10^3)^2}{(2.0684 \times 10^5)(1.0417 \times 10^6)} \right) \right]^{1/2}$$
$$f_n = 278.22 Hz$$

For Static Load

$$\Delta = \frac{PL}{AE}$$

$$\Delta = \frac{(1 \times 10^{7})(1 \times 10^{3})}{(5 \times 10^{3})(2.0684 \times 10^{5})}$$
$$\Delta = 9.67mm$$

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Import **prob1.DAT.**

File/Import/Analysis Model...

• Nastran

MSC/Nastran

Change the directory to C: \temp.

File name:

appenA.DAT

Open

To reset the display of the model do the following:

View/Redraw

View/Autoscale

3. Create the load set.

Model/Load/Set...

Title:

pull

OK

4. Define the options for a nonlinear analysis.

Model/Load/Nonlinear Analysis...

Solution Type:

• Static

Defaults...

A-b-6 MSC/NASTRAN for Windows 102 Exercise Workbook

Normal Modes with Differental Stiffness (SI Units) Appendix B

Under Output Requests, unselect everything except:

Also, change output to:

When asked if you wish to save the model, respond Yes.

File name:

appenB

Save

When the MSC/NASTRAN manager is through running, MSC/NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

When asked if it is "OK to Begin Reading File C:\TEMP\appenB.xdb", respond **Yes**.

Yes

7. Determine the results of the analysis.

To list the results, select the following:

List/Output/Query...

Appendix B

Under the Output Set pull down menu, what are the three modes?

Note: Check the second set of modes. The first set is the results from the previous exercise.

1 st =____Hz 2 nd =___Hz

3rd = _____Hz

Next, to list the displacement results, select the following:

Output Set:	8Case 1 Step 1.000000
Category:	1Displacement
Entity:	• Node
ID:	11
OK	

What is the total displacement?

Displacement = _____

The answer is listed at the end of the exercise. Are the answers consistent with the theoretical solutions?

When finished, exit MSC/NASTRAN for Windows.

File/Exit

This concludes this exercise.

A-b-10 MSC/NASTRAN for Windows 102 Exercise Workbook

Mode 1	278.22 Hz
Mode 2	687.43 Hz
Mode 3	1284.67 Hz
Displacement	9.67 mm