
APPENDIX A

Modal Analysis of a Beam (SI Units)

Objectives

- Perform normal modes analysis of a cantilever beam.
- Submit the file for analysis in MSC/NASTRAN.
- Find the first three natural frequencies and mode shapes of the beam.

A-a-2 MSC/NASTRAN for Windows 102 Exercise Workbook

Model Description:

The goal of this example is to find the first 3 modes of a beam pinned at both ends.

Figure A-a.1 below is a finite element representation of the beam. One end is contrained in all translations and the other is free to move in the X. Both ends are held in the X-rotation.

Figure A-a.1

Grid Coordinates and Element Connectivities

Table A-a.1

Length	1.0 x 10 ³ mm
Elastic Modulus	2.0684 x 10 ⁵ MPa
Density	7.8334 x 10 ⁻⁹ N-sec ² /mm ⁴
Poisson's Ratio	0.32
Area	$5 \times 10^3 \mathrm{mm}^2$
I ₁	1.0417 x 10 ⁶ mm ⁴

Hand Calculations

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \right]^{1/2}$$

$$f_n = K_n \left(\frac{1}{2\pi} \left[\frac{2.0684 \times 10^5 (1.0417 \times 10^6)}{7.8334 \times 10^{-9} (5 \times 10^3) (1.0 \times 10^3)^4} \right]^{1/2} \right)$$
$$f_n = K_n (11.805)$$

From Theory

Mode	Kn	fn
1	9.87	116.51 Hz
2	39.5	466.28 Hz
3	88.8	1048.28 Hz

Appendix A

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows 3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0 Model.

On the Open Model File form, select New Model.

Open Model File:	New Model
------------------	-----------

2. Create a material called **mat**.

From the pulldown menu, select Model/Material.

Model/Material...

Title:

Youngs Modulus:

Poisson's Ratio:

Mass Density:

mat	
2.0684e5	
.32	
7.8334e-9	

OK	
Cancel	

3. Create a property called **bar** to apply to the members of the beam.

From the pulldown menu, select Model/Property.

Model/Property...

Title:

bar

To select the material, click on the list icon next to the databox and select mat.

11	•	1
Mate	ria	1
1110110	1 1011	~

1mat	
1IIIat	

Elem/Property Type...

Change the property type from plate elements (default) to bar elements. The reason why we model it as a bar instead of a beam is because this problem focus on a simple beam.

Line Element:

• Bar

A-a-6 MSC/NASTRAN for Windows 102 Exercise Workbook

OK

Appendix A

Area, A:

Moment of Inertia, 11:

5e3	
1.0417e6	

OK	
Cancel	

4. Create the necessary NASTRAN geometry.

Mesh/Between...

Property.	•	1bar]
Mesh Size	e/#Nodes:	11]
OK				
		<i>X:</i>	<i>Y</i> :	<i>Z</i> :
	Corner 1:	0	0	0
OK				
		<i>X:</i>	<i>Y</i> :	<i>Z</i> :
	Corner 2:	1000	0	0
OK				

Now, specify the orientation vector for the bar elements.

	<i>X:</i>	<i>Y</i> :	<i>Z</i> :
Base:	0	0	0
Tip:	0	1	0

OK

To fit the display onto the screen, use the Autoscale feature.

View/Autoscale

5. Create the model constraints.

Before creating the appropriate constraints, a constraint set needs to be created. Do so by performing the following:

Model/Constraint/Set...

Title:

constraint

OK

Now define the left end of the model.

Model/Constraint/Nodal...

Select Node 1.

OK

On the *DOF* box, select these boxes.

OK

Next, define the right end of the model.

Select Node 11.

OK

On the *DOF* box, select these boxes.

TY X TZ

RX RX

OK

Finally, define the permanent constraints of the model.

Select All	
OK	

MSC/NASTRAN for Windows 102 Exercise Workbook

On the *DOF* box, select these boxes.

OK

Appendix A

A warning messaging will appear: "Selected Constraints Already Exist. OK to Overwrite (No = Combine)?" Select **No** to combine.

No	
Cancel	

6. Now create and submit the analysis file.

Type:

2..Normal Modes/Eigenvalue

OK

Change the directory to C:\temp.

File name:	appenA
Write	🔀 Run Analysis
Advanced	
Eigenvalues and Eigenvectors/ Number Desired:	3
Mass:	• Coupled
ОК	
Problem ID:	Modal Analysis of a Beam
ОК	

Under Output Requests, unselect all except:

Displacement

OK	
OK	

When asked if you wish to save the model, respond Yes.

File name:

appenA

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

7. List the results of the analysis.

To list the results, select the following:

List/Output/Query...

Under the Output Set pull down menu, what are the first three modes?

1st =____Hz

2nd = _____Hz

3rd = _____Hz

The answer is listed at the end of the exercise. Hit Cancel when you are done.

Cancel

8. Display the deformed plot on the screen.

Finally, you may now display the deformed plot. First, however, you may want to remove the labels and load and boundary constraint markers.

View/Options...

Appendix A

Quick Options	
	Labels Off
	Constraint
Done	
ОК	
Plot the deformation of the bea	m.
View/Select	
Deformed Style:	• Deform
Deformed and Contour Data.	
From the <i>Output Set</i> pull dow	n menu, select a mode case.
Output Vectors/Deformation:	1Total Translation
ОК	

When finished, reset the display then exit MSC/NASTRAN for Windows.

View/Select...

Deformed Style:

Non-Model Only

OK

OK

File/Exit

This concludes this exercise.

zH 41.9401	Е эроМ
zH 60.994	г эроМ
zH 12.011	І эроМ