
WORKSHOP 6

Linear Static Analysis of a Cantilever Beam (SI Units)

Objectives:

- Create a geometrical representation of a cantilever beam.
- Use this geometry model to define an MSC/NASTRAN analysis model comprised of bar elements.
- Run an MSC/NASTRAN linear static analysis.
- Visualize analysis results.

6-2 MSC/NASTRAN for Windows 101 Exercise Workbook

Model Description:

Below is a finite element representation of the beam structure shown on the title page. The beam has a hollow, rectangular cross-section as shown below in View A-A. The wall thickness is constant. The span of the beam is 5 m and has a fixed boundary constraint at X = 0 and a tip force of 1000 N is applied at X = 5 m in the negative Y-direction. The beam undergoes pure bending as a result of this applied load.

Figure 6.1 - Node Coordinates, LBCs and Element Connectivities

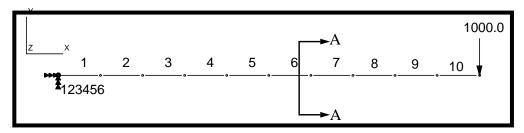


Figure 6.2 - Beam Cross Section

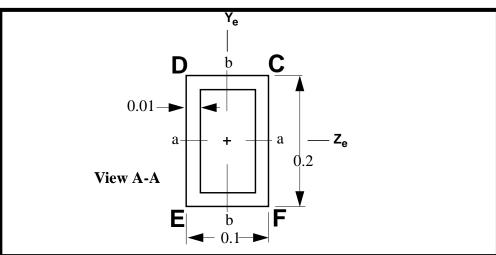


 Table 6.1 - Material Properties

Elastic Modulus:	7.1e10 N/m ²
Poisson Ratio:	0.3
Density:	2.650e4 N/m ³
Area:	5.600e-3 m ²
I _{aa} :	2.780e-5 m ⁴
I _{bb} :	8.990e-6 m ⁴
J:	2.090e-5 m ⁴

MSC/NASTRAN for Windows 101 Exercise Workbook

6-3

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Create a material called **mat_1**.

From the pulldown menu, select Model/Material.

Model/Material...

Title: Youngs Modulus:

Poisson's Ratio:

Mass Density:

mat_1	
7.1e10	
0.3	
2.65e4	

OK	
Cancel	

3. Create a property called **prop_1** to apply to the members of the beam.

From the pulldown menu, select Model/Property.

Model/Property...

Title:

			_
prop	_1		

To select the material, click on the **list** icon next to the databox and select **mat_1**.

Material:

1..mat_1

Elem/Property Type...

Change the property type from plate elements (default) to bar elements.

Line Elements:	● Bar
ОК	
<i>A</i> :	5.6e-3
<i>I1:</i>	2.78e-5
<i>I2:</i>	8.99e-6
<i>J</i> :	2.09e-5

NOTE: Be certain that you understand the assumed bar orientation.

Stress Recovery:		
	Y	Z
1	.1	.05
2	.1	05
3	1	05
4	1	.05

OK	
Cancel	

4. Create the necessary NASTRAN geometry.

Mesh/Between...

Property:	1prop_1		
Mesh Size/ #Nodes:	11		
ОК			
	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Corner 1:	0	0	0

MSC/NASTRAN for Windows 101 Exercise Workbook 6-5

	X:	<i>Y</i> :	<i>Z</i> :
Corner 2:	5	0	0

Now, specify the orientation vector for the bar elements.

	<i>X</i> :	<i>Y</i> :	Z:
Base:	0	0	0
Tip:	0	1	0

OK

To fit the display onto the screen, use the Autoscale feature.

View/Autoscale

5. Create the model constraints.

Before creating the appropriate constraints, a constraint set needs to be created. Do so by performing the following:

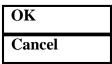
Model/Constraint/Set...

Title:

constraint_1

OK

Now define the fixed end of the model.


Model/Constraint/Nodal...

Select Node 1.

OK

On the *DOF* box, select all 6 boxes.

WORKSHOP 6

6. Create the model loading.

Like the constraints, a load set must first be created before creating the appropriate model loading.

Model/Load/Set...

Title:

load_1

OK

Now define the relevant loading conditions.

Model/Load/Nodal...

Select Node 11.

OK	

Highlight Force.

Force	
-1000	

$FY \square$	
--------------	--

OK Cancel

7. Submit the model for analysis.

File/Export/Analysis Model...

Analysis Format/Type:

1Static	
---------	--

OK

Be sure to set the directory to C:\temp.

File Name:	beam
Write	
	🔀 Run Analysis
ОК	

When asked if you wish to save the model, respond Yes.

Yes	

File Name:

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

8. View the text results of the analysis.

To list the results, select the following:

List/Output/Unformatted...

Select All	
OK	

Unselect All Vectors and instead select T2 Translation.

All Vectors, or
3T2 Translation

OK	

NOTE: You may want to expand the message box in order to view the results.

Answer the follwing questions using the results. The answers are listed at the end of the exercise.

What is the Y displacement at the tip (Node 11)?

Disp Y = _____

You can make another list to find the answer to the second question.

To list the results, select the following:

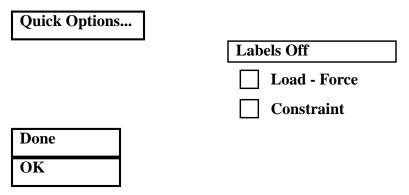
List/Output/Unformatted...

Select All	
ОК	

Unselect **All Vectors** and instead select **Bar EndA Max Comb Stress**.

All Vectors, or

3109..Bar EndA Max Comb Stress


OK

What is the maximum positive bending stress? Max Pos Bending Stress = _____

9. Display the deformed plot on the screen.

Finally, you may now display the deformed plot. First, however, you may want to remove the labels and load and boundary constraint markers.

View/Options...

Plot the deformation of the beam.

View/Select...

Deformed Style:	Deform
Deformed and Contour Data.	
Output Vectors/Deformation	3T2 Translation
ОК	
OK	

10. Theory.

<u>Tip Deflection - Y Component:</u>

Tip defl.	$Y = -PL^3/3EI$ where:	
	P = tip load	= 1000 N
	L = beam length	= 5 m
	E = Elastic Modulus	$= 7.1e + 10 \text{ N/m}^2$
	I = Moment of Inertia	$= 2.78e-5 m^4$
Tip defl.	$Y = -[(1000)(5)^3]/[3(7.1e+10)]$	D)(2.78e-5)] m
	<u>= -2.1110e-2 m</u>	

Maximum Positive Bending Stress:

Max stress	$\sigma_{max} = abs[PLc/I]$ where:	
	P = tip load	= 1000 N
	L = beam length	= 5 m
	c = extreme fiber distance	= .1 m
	I = Moment of Inertia	$= 2.78e-5 m^4$

Max stress $\sigma_{max} = abs[(1000)(5)(.1)/(2.7e-5)] N/m^2$

$$= 1.7986e + 7 \text{ N/m}^2$$

Max Stress	7+9 8867.1
qsiA Y	1120.0-

6-12 MSC/NASTRAN for Windows 101 Exercise Workbook