WORKSHOP 12

Buckling Analysis of a Cantilever Beam

12-2 MSC/NASTRAN for Windows 101 Exercise Workbook

Model Description:

Below is a finite element representation of the axially loaded beam shown on the title page. The material and beam properties are listed below.

 Table 12.1 - Material Properties

Elastic Modulus:	10E6 psi
Poisson Ratio	0.3
Density:	0.101 lb/in ³
Plate Thickness:	0.1 in
Bar cross sectional area:	1.525 in ²
I _{aa} :	4.0568 in ⁴
I _{bb} :	0.3343 in ⁴
J:	0.0251 in ⁴

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the Open Model File form, select New Model.

Open Model File:

New Model

2. Create a material called **mat_1**.

From the pulldown menu, select Model/Material.

Model/Material...

Title:

Youngs Modulus:

Poisson's Ratio:

Mass Density:

mat_1	
10e6	
0.3	
0.101	

OK Cancel

3. Create a property called **prop_1** to apply to the members of the beam.

From the pulldown menu, select Model/Property.

Model/Property...

Title:

Material:

prop_1
1..mat_1

Elem/Property Type...

Change the property type from plate elements (default) to bar elements.

Bar

Line Elements:

OK

A:

12-4 MSC/NASTRAN for Windows 101 Exercise Workbook

<i>I1:</i>	4.0568
<i>I2:</i>	0.3343
<i>J</i> :	0.0251
ОК	
Cancel	

4. Create the NASTRAN geometry for the beam.

Mesh/Between...

Property:	[1prop_1	
Mesh Size/ #Nod	es/Dir 1:	11	
OK			
	X:	Y:	<i>Z</i> :
Corner 1	: 0	0	0
ОК			
	X:	<i>Y</i> :	<i>Z</i> :
Corner 2	: 0	50	0

OK

Now, specify the orientation vector for the bar elements.

	<i>X</i> :	<i>Y</i> :	<i>Z</i> :
Base:	0	0	0
Tip:	1	0	0

OK	

To fit the display onto the screen, use the Autoscale feature.

View/Autoscale

Rotate to an isometric view.

View/Rotate...

Isometric	
OK	

5. Create the model constraints.

Before creating the appropriate constraints, a constraint set needs to be created. Do so by performing the following:

Model/Constraint/Set...

Title:

constraint_1

OK

Now define the relevant constraint for the model.

Model/Constraint/Nodal...

Select Node 1.

OK

On the *DOF* box, select all 6 boxes.

OK	
Cancel	

6. Create the model loading.

Like the constraints, a load set must first be created before creating the appropriate model loading.

Model/Load/Set...

Title:

load_1

OK

Now, define the 1 lb_f axial force.

Model/Load/Nodal...

Select Node 11.

OK

Highlight Force.

Force	
-1	

FY	\boxtimes
----	-------------

OK	
Cancel	

7. Run the analysis

File/Export/Analysis Model...

Analysis Format/Type:

/Buckling	7.	Bu	ckling	
-----------	----	----	--------	--

OK

Change the directory to C:\Temp.

File Name:

Write

OK

buckling		
3		

Additional Info:

Number of Eigenvalues:

Run Analysis

When asked if you wish to save the model, respond Yes.

Yes

File Name:

buckling

Save

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

8. Look at the results to determine the first three eigenvalues.

Answer the following questions:

What are the first three eigenvalues?

Eigenvalue 1 =	
Eigenvalue 2 =	
Eigenvalue 3 =	

(Hint - use View/Select, Deformed and Contour Data, Output Set)

 $P_{cr} = P_{applied} * Eigenvalue 1$ = 1.0 x 3299.412 = 3299.4 lb 9. Theory.

WORKSHOP 12

Classic Euler:

$$P_{cr} = \frac{TL^2 EA}{\left(\frac{L'}{\rho}\right)^2}$$

$$L' = \frac{L}{\sqrt{C}} = \frac{50}{\sqrt{.25}} = 100$$

$$\rho = \sqrt{\frac{I}{A}} = \sqrt{\frac{0.3343}{1.525}} = 0.468$$

Thus,

$$P_{cr} = \frac{TL^2(10e6)(1.525)}{\left(\frac{100}{0.468}\right)^2}$$

= 3299.4 lb

This concludes the exercise.

12-10 MSC/NASTRAN for Windows 101 Exercise Workbook

Eigenvalue 1	3299.412	
Eigenvalue 2	29696.69	
Eigenvalue 3	33527.16	