WORKSHOP 11

Modal Analysis of a Simply-Supported Stiffened Plate

Objectives:

- Manually convert a linear static analysis input file to a normal modes analysis input file.
- Learn how to generate weight information for your model.
- Submit a modal analysis to MSC/NASTRAN.
- Review the results and mode shapes from the analysis.

11-2 MSC/NASTRAN for Windows 101 Exercise Workbook

Model Description:

The model used for this exercise is identical to the model used for the previous exercise.

Figure 11.1 - Plate Geometry

Table 11.1 -Material Properties

Elastic Modulus:	10.3E6 psi
Poisson Ratio:	0.3
Density:	0.101 lbs/in ³
Plate Thickness:	0.1 in
Bar cross sectional area:	0.38 in ²
I _{aa} :	0.2293 in ⁴
I _{bb} :	0.0168 in ⁴
J:	0.0013 in ⁴

Exercise Procedure:

1. Start up MSC/NASTRAN for Windows V3.0 and begin to create a new model.

Double click on the icon labeled MSC/NASTRAN for Windows V3.0.

On the *Open Model File* form, change to **c:\temp** directory and open the model from the previous exercise.

Open Model File:	plate			
Open				
2. Create an input file for a modal analysis.				
File/Export/Analysis Model				
Analysis Format/Type:	2Normal Modes/Eigenvalue			
ОК				
File Name:	modal			
Write				
Number of Modes:	5			
	Run Analysis			
Advanced				
Eigenvalues & Eigenvectors/	[]			
Number Desired:	5			
	Madel Comula Drahlam			
Problem ID:	Modal Sample Problem			
OK				
Unselect all Output Requests except for Displacement.				
	Displacement			
ОК				
WTMASS	0.00259			

¹¹⁻⁴ MSC/NASTRAN for Windows 101 Exercise Workbook

OK

When asked if you wish to save the model, respond Yes.

Yes

When the MSC/NASTRAN manager is through running, MSC/ NASTRAN will be restored on your screen, and the *Message Review* form will appear. To read the messages, you could select **Show Details**. Since the analysis ran smoothly, we will not bother with the details this time.

Continue

3. Turn off all labels and load and boundary constraint markers.

View/Options...

View/Select...

Deformed Style:

• Deform

Deformed and Contour Data...

Click on the *Output Set* listbox to get all modal frequencies, and answer the following questions:

What is the frequency for:

Mode 1 = _____ Mode 2 = _____ Mode 3 = _____ Mode 4 = _____ Mode 5 = _____

To view a mode shape, select one of the modes.

OK	
OK	

5. Using coupled mass matrix for modal analysis.

The previous results were calculated based on a lumped mass matrix. Repeat **Step 2** with the following modification:

(refer to Step 2 and answer Yes when asking for overwrite)

Advanced	
Eigenvalues & Eigenvectors/	
Number Desired:	5
Mass:	• Coupled
ОК	

Continue on just as before, and answer the following questions:

What is the frequency (with Coupled Mass) for:

Mode 1 = _____ Mode 2 = _____ Mode 3 = _____ Mode 4 = _____ Mode 5 = _____

This concludes the exercise.

	w/o COUPMASS	w/ COUPMASS
Mode 1	17.56	17.61
Mode 2	36.25	36.72
Mode 3	68.36	69.18
Mode 4	91.38	93.37
Mode 5	147.18	150.74

ASC/NASTRAN for Windows 101 Exercise Workbook

11-8 MSC/NASTRAN for Windows 101 Exercise Workbook